R

.. - FTD-MT-64~390

TPy
51
sy
O
o
=
@
z
]
tx1
O
v
Z
o
r‘
Q
@
wd
=
<
%
o
Z

- . COURSE TN SPiHEROIDAL JEODEDY
Ry

G, V, Ragratuni

4
. '
3
. ®
T
¢
(2N

Distribution of this dociament
is unlimited,

BEST AVAILABLE COPY




- Best
Available
Copy



e n

I \.’,M,_*;_‘w

¥oUE NN
BUFF SECTION (o]
8]

SRR 21

v
USTRATION AVAILASILITY CODES
DT AVAL st w SPESIAL -

/

This document is a machine translatlion of Russlan
text which has been processed by the AN/GSQ-16(XW=-2)
Machine Translator, owned and operated by the United

%
:
g
%

States Air Force., The machine output has been post-

edited to correct for majcr ambigulitles of meaning,

words missing from the machine's dictionary, and words

out of the context of meaning., The sentence word ; -
order has been partially rearranged for readabllity.

The content of this translation does not indicate

editorial accuracy, nor dces 1t indicate USAF approval

or disapproval of the materlal translated,




FUGVP MBI NS s g e e

1
|
¥ FTD-MT- - _. ) :
L A S—— .
%} .
: EDITED MACHINE TRANSLATION
®
Z OUBRCK TH SPHEROIDAL GZODESY
Bys 6, V, Magratuni .
‘ “nelish Paces: 303

i

- :

]

4
;. T T
., f,
- a R g

THIS TRANSLATION IS A RENDITION OF THE ORIGI- g
NAL POREIGN TEXT WITHOUT ANY ANAL YTICAL OR M
EDITORIAL COMMENT. STATEMENTS OR THEORIES PREPARED BY: H
- ADVOCATEDOR IMPLIED ARE THOSE OF THE SOURCE N
AND DO NOT NECESSARILY REFLECT THE POSITION TRANSLATION DIVISION y
OR OPINION OF THE FOREIGN TECHNOLOGY DI PORBIGN TECHNOLOGY DIVISION i
VISION, WP.AFB, OMI0. i
FID-MT-. ._.._ Date @ i 19 v
b PSR T AR




Ve V. acraturnd

KUES SFERCIDICHESKGY GEOT

Dopuchcheno
Ministerstvom vysshepgo 1 srednego
spetsialtnogo otrazovaniya RSTSK
v kachestve uchebnlka dlya studentov
astronomo-geodezicheskikh spetslal'nostey

Iraataltatva eodezicheskoy literatury

Mogkva - 1G.0

Faren 1-0657

e

-

e R Tt coir A BBy NI

cemm i Wia e




Ber
i1
3
o

t

3

7

&

*
‘.
N

LRI

D
%
£,

Lo N

CIRC 2" "NACT VORI ENEET

0)Ace i, (6S)S1S Acz N (L.} Coustry of Infe {4))Tromslation K,
IMe303073 1R MI6400350
($Avther - Pricrity 11 -
BAGRATUNI G, Y. ‘ Diswitution  orp
{42)Source

. KURS SrEROIDICHESKGY GLODEZII .
leRewy [ONRet  [O4Yr  JOSIVEl  JiCilas (07}, Pp - [4SIE. Pg [(73iDte  [(47)Subtoct Code

UR 0000 62 1000 000 0001 0252 NONE o8
Leaguage
nla Mpscow GEODEZIZDAT
oric V90  geodesy, astronomic geodesics, education irnctitute, training aid
{68)F araign Title
KURS SPEROIDICHESKOY GEODEZII o

(OR)English Titie

COURSE OF SPHEROIDAI, GEODESY

{57) Bedder Clas [(63) Clas |(64Rel  |(60) Relcase Expansion

n 00 0

S . L=

ABSTRACT: Thisrtextbook covers the materials taught on spheroidal geodesy

Tor fourth-year geodesy students at Soviet colleges and also gerves as a guide
for post-graduate students and practising geodetic engineers. Ellipsoidal
curves are considered and the theory of the geodetic triangle on the surface
of an ellipsoid is explained. The calculation of geodetic coordinates is
covered and an entire chapter Js devoted to the solution of long-distance
geodetic problems. There are chapters on problems of representing an ellipsoid
on a sphere and planes, geodetic projections of an ellipsoid on g plane, and
problems on the surface of the terrestrial ellipsoid, English translation:

302 pages.

FTD 1150t D492




]

i

3
et b o g

P I PR RS R R S 1% TR IV NEREMS ST I Rl A § - Sl S5 FR NN ol A8+ 3. G 8 :
s T B TR Y L T A (e 1Yo A B 1 T A I 4 ¥ DU 13
D i
B T T B e U T T P v ?
L, T sbtoer and Trotlems of Spheroidal 000308y e eeeecsocscssntovssasse §
s
v . » M i . . z
. fweverlopment. oF Fnowledime Aboat the Mathematical Fieurs ¥
R T 13 oD . =
£
. Yoosentlal ITnformation on Maihematicr o i eneenscoteevacanenaseas tF %
N " 2
L 1 1 z
R 0 Lo T T A g
L. Ut hErical TrironOmetlY cee e sansntsssosvoascssenvonescosanssvnas F ;
‘
+ £y H
Y. Differentlsl a0matry cieei i st rscsn0nerreracnae et ennrnren i
h
Tpter T, Terrestrial Sphorold. L ieeeeessrsectannecitinrennriacanctaosaaananss 3% :
Toh. Elemanta of Meridian ElLIpSe...cceuveseecsstannosonsncansanccanansns ok i
|
F, Merldian Ellipse and Connected with It System of
COOT  iNAt e (i it ereennriotavassonrennnosoctsossssstassasssrsssnansos
NN Connectlion RBetween Geodetic, fG2ocentric and R=duced
A It UdE . i iieensneensnonactnsesssncitorarstssscssecnrsossovrvrsecassanne 00

Main Radii of Curvature at a CGiven Point of a

e -
PRI O s esieencnsitunonsrnoncacanciaaannsoncessavensnssanses caee

“. Transformation of W eand V in Power Gories.....ieeeceescccaveasoneass 49

SR Lonaths of Ares of Meridian and Parsllel. .. .v.eceecnccanronrsannseee of
I 1v. Talculation of Arcas on the Surface of a Terrsstrial
rx

:;I:erOid-v-no-.tt.A-uo.-lo.o.l.a-s----'-blllboltitl"-"OH-OO-OGQO0.0

Chayter 111, Tnvestigation of Curves on Terrestrial Speroid..veececssescecnneses

T.o Gormal CoCl NS, i eesacsanrssonsesanossvssnsosnsonoacscnvossessonnsanenana !
£ 11, Muatual Noraal Sections and an Angle BetWeen ThHeM.eeesceocsoesooroeas 0
L o Arlmath ani Chord of @ NOrmal SoCtioN..icieeeosseencoscensasssnaesnes 10
£ 150 lonsth o Are of HOrmal SeCUl0N.eeueseevresesesecsesansosansansorans I
Tl 1 00 e s it anvnsneesnannsossosantsotesnssasscansnsaoatnssntasnosovesnseosoens 'l ;

i, Deteraination of leodesic ani Its Location melative

i
o MUt HOrmAL el NG ittt et et teacane st et e s e e eneonnaens

. N .
A 12018510, it reernecccresectnnrcninccnacns

Tt . Fandamentsl uation oi
Yo denietlc 1olar Coordinale S ieiiiictansivesitvrartesaennnassnransoases I

T RiShteAncla Tihercidal Coordinatesn, L. i iieinstsresacsnsttatenanns )

-

e 1 >, v . . . : M

Voo Nirterances of Atimuths and Lerecsthe of Apos or iaderios -
neyy lOTE B A B £ Y D '
.




Yy

. gt ¥

{

:. . . gt e e aens PP R
: ., e et et ol
B L T LS UL R TU
DRI A A B SRR AR A A L B I R Y B B L BN I I R U S I
RS TR 1 SR S .5 ST LNES ST B Y
L
. A T : "? :!..: ’ o .‘
L L L U TR S LIPS SV
et G e s e r s v b s easberses brsos st iesgtostr et
. . et A .
- L} . [ SRR . . = - - R
. R TR S OIS PR 5433 & 131
R S {0 veneseses
el [ A Lasitudoes, Lot
".. - - ‘.ldl.ltoltql..
- e T Coror Talelation off e e
<. toee crdnecrulaction Yolnts, el
D st ocde g Moge Atiwath Oor i
CEE NI SRR SRR Y B BN I SR R R S I B B IR I B B A B N A I g

: M oteadet it frotle
AP : i (Jrudy oo M, 8

es P om e o a0 e R R N T T N
' R A S oy Lone Distan
L -
Lt : et T i
: ' [ Tl viesesnarseanene
O & . vt woldetis g
P Lo . Sray seoensassmsa s
- . H et e s cseug ot aus e sssacanse s
v ‘C.‘l.ll'l..l.l.l.'.‘C.".‘.Il..l.‘.
T T e te s scstesvenieseacsere tn
. ' R U LT A .

ve

R R R R R R N LI I A I A ]

Y e o e b

. .o .. - C 1 . . .,

: BERN . Yo .
. . r, . . LR . '..','v‘.

U A HEREE S

.. [T ¢ U

. : : : T RSO

P T T R R PRI IR
» et e N . E

- PR . . . oos e e

: ot R DAY
B . s e et P -

i
4

P
v

-



Radiias o

14 ('1hf‘r1cal ﬁ'_‘;‘-!‘(:.‘-ﬂention..n..u-.-...-......-..--................ ’0:7
S, Epnaledyacing Peprosontatlon i cii i vncestistcncasesrecnsaesa  LF
3. Uredorstandineg 0F AROSENNTe, tiueieececrasacirstsannorsncnsanovosns 3

C.'I'];“E!' Jill. seadatice P‘l‘OjcCthﬂS............-.-..-......--.............“.‘.. 11

St Hagioc Posirions and Dotertlination, e esveerossnosssssorssoacnnassanss 11

P

a4, Mathematical Bazes of fauss-Kruger Frodecriion., ieeeeceecesconrasoree 17

1. Pormulas For Calculation of Gauzs-Kruper Coordlnates
by Geodetic Coordinate s, ivievesriseasaceorscanssssrovosrassssanses - O

Z. Formilas for Calcu -ition ol Geodetlce Coordinates by
Gauss-KrugZer Coordi. 8l8S , iassesrsesosscvsrsseasoreunsvoassissensss

5. Convergznce of Meridizn: 01 & PlaNC..ieeacsscreornasesnsnnannones -
4, 50ale OF IMABC.eusvensssosssssosvossstonsncnssossessosavevvanase €09
o oat,  Roeducstion Problem of Causs-Kruger Prodecticn...ieeeccevorvenencanses 31

1. Derivation of Furmulas for Reduction of Dir‘antes.,.i.eeecsceases o5

b
e+ g A LSO RE ST e L AT D ) S-S IEIREN

0. Reduction of DIreCtloNS...veeeecceoseroancsossocnacssoonasensseee 297

t 4., Dlrect and Inverse Geodetic Problems with GausseKruger
Cooriinates on &n EllipSoid...sseeescosasacasossareoscconsnrnnosrssne 743

1. DIrect Problem..ciecssesescesessascacooncsvstcarssnncossssenannns PH3 '
7. Inverse ProbleM.i..ecececesesscocsennsrasasssansrarsvasasconssane Ch5

¢ 47, Practice of Application of Gauss-Kruger Frojection and

COOrdinNatesS . ciusevreveanrosocsncarsnsasansoassseosnsocencesvesenssans il

1. F. N. Krasovskily and A. A, Tz0tOV TableS,.veerooeaconcranacnnaas U7

Pe Dy A, LBrIn TBBLeS. . uiveuaeeonrcncaccrsseasoosnanrsoassncosaanesss

L]
P
OWw

3, Profescor A. M, Virovets TableS..cesseecocassssronvoscosssncanns 2O

§ 48. Calculation and Drawing of Kilometer Srid; Insertion of
G2o0graphic Net onto Grid on Gauss-Kruger FrojJectlon.......seevosanas. 251

£ 49, Conversion of Coordinates from Zone tO ZONe....vvesseoorncnscassnaas 237

Cnaj ter IX., Short Survey of Geodesic Projectiomns. . .i.eeecsscvaccccntaseasorsosns €99

§ 50, General Remrks......-.....-...u.-...¢..-.......--....-......-.;‘-. :"‘79
¢ 1. Soluiner ProjJactions and Coordinates., ., cceeveseecserentsceancersoscs PO

A The Lambert PI‘OJE(‘tiOﬂ.............-.-.-....-.......o‘...-........-. A%

& 73, Otereorraphic Geoletic Projectlons. . i.viiceerrecacenseaceonnsssssnne E° )
1

'

1., Busgell ProJectilnn.cuesececearencceconvorsctnsnnsssosssascsonsane :

T T2 auUSS PrOJettlon...vieesscrccoescotosccsssonenonsnansosonnnos - &
-, Conclusion on Geodetic Prodectiont, iseissvieceevorssscacanssrocnsans ¢

Chaptor Y. Dirferentlal FOrMULAc . . ..y eeeerasacsasarorerssssssanssessassnnnsens 173

e
-

Do e rmIN It 0Nt s ieveevessansnsrsassasererssssnanrcesarossssacncsnees )

i1t




B R

e

, ;
.
-
t, 0
.
-d
.
-
TS S N
o .
T ot
....A..-l.

secn

DRI S )

veen

“aae

gt

as s

R

e

.

>

.

.

.

HETRAN N X PULEE

LZ0 M MAT AN,

ateasse

oo

seo .

.o

«

.

o

1]
)
1




# Ay aing W]
K E@ iontdin

i
¢
{
[4
£
3
i
b
s
U, S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATIUH SY. M :

BRlock 1Italie Transliterution Block Ltalic Transliternrir.

A a A a A, 8 P P P p R, r

B 6 5 6 B, b c ¢ C ¢ S,

B » B ¢ V, v T 1 T m T, t .

rr r s G, & Y ¥ Y y U, u

4=z y/ D, 4 ¢ & ® ¢ F, £

E e E e Ye, ye; E, e* X x X x ¥h, k!

K w X Zh, zh H u U y Ts, ts

3 3 3 s Z, 2z b S T S Ch, ek

H & H u I, 1 m w 2 ow Sh, sh _'

R & A a Y, ¥y Ww w« o y Sheh, =hieh ;

K x K x K, k D » > 3 " '

M M M 1, m L b b ' !

H H » N, n 3 » & E, e i

0 o 0 o 0, o 0 ®» O » Yu, yu :

m n 7 n P, p A 2 A Ya, ya :

* %% initlelly, after vowels, and after %, i; & elsewhere.

en written as B in Russlan, transliterate as y8 or @, ;

The use of diacritical marks is preferred, but such rarkr
may be cmitted when expediency dictates,

L v ) Mo ae amlen L e e




ain
cos
tg

ctg
asc

i
]
i
i
4

are

are
arc
arc
arc
arc
are

rot

fAussian

cosec

cosec

cth
ach
cach

FOLLOWING ARE THE CORRESPONDING RUSSIAN AND ENGLISH
DESIGNATIONS OF THE TRIGONOMETRIC FUNCTIONS

English

sin
cos
tan
cot
sec
cec



PREFACE

In accordance with the new educational plan for astronomic-geodetic specialty
spheroidal geodesy is studied in the IV course of geodetic colleges in USSR for 7
tours 5 week during the entire scholastic year, Independent Letiing of this depart-
ment of higher geodesy has as an alm, on one hand, to give future engineers the nec=-
essary Kknowledge for treatment of results of geodetic measurements of the spheroid
and, on the other, to prepare them for study of theoretical geodesy, mathematical
cartography and theory of the flgure of the Earth.

Till now in USSR there was no special textbook on spheroldal geodesy. The work
of' prafessor N. A. Urmayev "Sphercidal geodesy" (1955%), bteing a scientific treatlse,
contulne mainly results of his research on this subject and does not embrace all prob-
lems of the course program, Second part of the fundamental labor of F, N. Krascvskiy
"iuide to Higher Geodesy" (1342), which up to row was recommended as a textbook and
wiere spheroidal geodesy for a period of 1942 is presented with sufflcient illnecs
has slpgniticantly become cbsolete in certain parts. Furthermore, the work of ¥, N,
Krasovskiy, 1n the contemporary understanding can not te considered as a textbook,
This sclentific gulde, is intended not only for students and post gradustes, tut alsce
tor enyineerse-geodesists working on large astronomic-geodetlc nets, and tor tepinner
sceientlgts,

li.e offered textbook embraces all questions of the course program on oy eroidal
reodesy, wherr in many cases presentation exceeds the bounds of progras reqiirerents,
Juch appronch should be consldered as fully acceptable, since majority of tre gt et n
ar'ter masterisg  be course wish to study the problems deeper und to btecore wiier ne-

@ tinted with the direction of the development of sclentific *:oiuer in 1ve wre of
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spevral-dad ereoteny,

ALt f dochddy, ows o rele, Lo annjytic metrod ot presentation, the geometrle np-
P Lo oazed ror olariyy o ticeonrse and interpretatlon of complex analytic rela-
“loncetee, Jhe olannies] st et ieal apparstus ie used, However, in order tnnt
o e o artiftelal e roreanions and reckonings would not over sindow the fun-
anental tdeas deperdencier, nonetrundamental detalls of derivations of coertaln
dore b Dol e lons bnoa et er of gases were omitted,  Alengs with this an attempt
toomande to fuprove qecepted i1l now symbolism,

Ponentially tre oontent of ’:eltexzbook will Indlicate ithe following.

1. e ciapter on ¢llinsold curves is anbstantially expanded. Here for Lue
vire rime in our educational llterature is presented a resolution of geodetlic prob-
Tons wi* thae help of nermal se~tieors wid chords of ellipsoid. In cennection with
rels e shoaly atont norsal sectlors and chords of ellipsold are expounded witl cone-
sileeat be Mlinese, Teactling on reodesic and thelir application to resolution of
troblen: of gpreraieal geodesy occuples sutstantial place in the textbook., It is
show: tiat applicatien of geodesic in fie resolution of geodetlc protlems has deflnite
wiviarttames as compared o application af otuer curves on the rurface of the ellipsold.

So dhe tieary of peoder Lo triangle on the sarface of an ellipsold is présented
g ilne to teass work:  "Investiration of Curved Surtaces",

A, 'motie Lasis or resiulis of Investigations of the antror and other sclentiste
too e oswpler o calonlatlion ot reoderic coordlnales iIs conslderakly expanded, [or tre
rirss time toy ometrode of ne tessritimle ceuleulations of geodetic cocordinetes and the
s trod o cards by, M, O, Molodenskly are presernted,

e oresel Clen of seodetic proclems for long distances 1s pregented in ou

.;.
votip et ely new Canidorn, Lugiend of orne paragrapi, devoted to thls guestion in former

venTLer, trar cexitoes as @ Wiole chapter with account of bhasie methods of resolution
o dlpecs ot inverse cceodetic peerlens for lons dlstances,

Poeorren b oor repregertatio: of ellipsceid on a sphicre and plunes are pre-
Poo siocle Pl on o asis of eguations of Kos.l — Klemstn type, oltined o

e ot o e cenere]l o egautiong by iaics,

A lmporsaes ploee le e ld ry e ddeseript lon of peoder te prodectlions orf

elldpreid o plaree,  Ieov e st len corpurat fve evaldstion of tre mont o wlaely ised

cevader fo profest tons bs dvern,
‘. T A B T e eyl oprert of radar and speed o0 1err ceoder i
Pt e qe e




e e RPN AR RGPS 1

measarements a necessity arose for the resolutlon of a number of problems on tle sur-

race of terrestrial ellipsoid, Parallel with this work the Chalr of Hiaher Geolesy

“IJ:A14, candidate of Tecih, Sclences V. A, Polevoy worked on composition of a train-
inc aid “"Mothematlcal Treatment of Radargeodetic Measurements”, wnicr were arlready
p"hlished.L There " re to avold parallellem in tLis texibook, the problems of trent-
zent. of radargeodeflic measurements are not shown,

8., In order not to overleoad the textbook witn examples of calculations, the

more model and universal of them are referred to the "Practicum" of professor B, N,

Rabinovieh,® PBut nonmodel examples are placed in corresponding places after presén-

|

tation of the theory of a glven problem.

_ ' The author attempts in presentatlion of key basic concepts to aveid "mathematical
ballast", which submerges the essence, How well he succeeded 1t is difficult for the
autior to judge, However he earnestly hopes for great help and friendly criticism
from geodetic soclety; such help became a tradition in our Soviet activities.

Of great help to the author in preparation of the manuseript for publication was
rendered by assistants of the Chalr B. F. Khitrov, V, A. Romanovskiy and A. N,
Solov'yev, Translation of foreign literature and a check of forelgn texts and names
were carried out by senior teacher of the Chalr of Foreign Languages MIIGAIK G. Iﬁ
Zalesskaya.

The author obtained ruch valuable egdvice and recommendations on the manuscript
from Asst. Professors A, I. Vitman, A. V. Butkevich and A. A. Vizgin.

I consider it my pleasant duty to express to enumerated comrades my deep grati-
tude for their help in my work, especially professor P. S. Zakatcv, whose very valuable

remarks rendered great service to author during final editing of the manuscript.

G. V. Bagratuni

{
t V. A. lolevoy, Mathematical (reatment of Radargeodetic Measurements, M., :
Yeoderizdat, suel.

EF. N. Rabinovich, Practicum on higher geodesy. M., Geodezizdat, 1961,

FTD=MT-" 4-290 -3
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CHAPTER I
INTROCUCTION

§ 1. THE OBJECT AND PROBLEMS OF SPHEROIDAL GEODESY
Higher geodesy 1s a science about the filgure of the Earth. The maln sclentific

problem of the highar geodes: consista of determination of the gize anrd shape of the

Earth; this problem 1s resolved by neans of establishment of a typical mathematical

flgure which would geometriculiy present the Earth on the whcle and the study of

deviations from the real form < the Earth from a fixed mathematical figure. Such

figure is a rotating ellipsoid wit) small poler compression also called a spheroid,
n

The term “"spheroidal geodesy" is derived hence.

Spheroidal geodesy is a study of the geometry of terrestrial ellipsoid and rep-

resentation of important parts of its surface on a sphere and on a plane,

All geodetic measurements are made on the physicsl surface of the Earth, then
for strict mathematical treatment the results are projected on the surface of adopted

reference-ellipsoid. The ellipsoid, oriented on the body of the Eartn, in a determined

way on whose surface are projected the results of geodetic measurements and or. which

cocrdinates of geodetic points, are determined, is called the reference-ellipsold,

Frequently the surface of reference-ellipsold is called the surface of relativiuy,

In order that the surface of the reference-ellipsoid would be disposed as neurly as
possible to the surface of the Earth within the limits of a given area, it is necéssary
that i1s major semlaxis usnd polar compression te obtalned from the results ot geodetic
gravimetric, and astronomical measurements, carried out in this area,

When it 1s spoken in hlgher geodesy about the surface of the farth, visitle

FTD=MT-1:4-300 5=
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physleal sarface {8 oot laplied, bl a sea level sarrface st every point of wilern o
plamt line colneldes wirh the normal, Tils condition sotizfles inrfnite riwrer ot
cea level surrmecs, In hlgher gecdesy that gurtace [s ecorgldered welen colueldes

vie tow miprfice of the werld ocean in oa state of complete equllibrlum of tur wnter

contalned in L4 ani, congegiently, not disturbed b. tlies, elbz, winds, oure
remits el atler facters,  IF 48 3uprface {8 hypothetically extended throup:. Lhe

mafnilanis o sten s manner thai “he plumb lines remaln nornal to 1t, everywnore fion
we wlll ottaln 2 closed, continuous without folds and ridges, even surface, which is

15

eilled - e dutum O rhe surtace of the Farth, Geometrie figure, limliLed by tinis

vortaee, tg called the geold. Thus, terms "surface of the geoid" and "datum of tn
surfraice of tre Enrth" have identical meauing,

in order to present the geoid on the «hole, an idea ls introduced in higner
Leodesy ahou( th:e general terrestrial ellipsoid, derermined by the following charac-
terioriene

1, The volume of the ellipnoid is equal to the volume of the geold. 2. The
cenier vl gravity and tie plane of the equator of the ellipsold coiricide with the
center of gravity and the plane of the eguator of the Earth, 3. The sum of the
syuares it deflections of the geold from ellipsoid should be minimum In height.

fhe problem of determinztior of the size and shape of general terrestrial ellip-
seid oenters Into nantural-sclence problem of study of the Earth as a planet and can he
rlgidly solved by foint ise ¢r data of geodesy, gravimetry, astronomy, geoprysies,
Seglugy and otner related seiences ohtalned for all the surface of the Earth,

srolectlon of the resulis cf tie geodetic ineasurements on the surtace ot the
reference ellipsold 1o 4 complex physicsl and mathematical problem, which is studied
In tre theuretical part of the higher geodesy, In spheroldal geodesy it is assumed
tiat i resilts orf fne geodetlc ceasurements are rigidly projected oun the surface of
e peterence-ellipsoid and gecietlc problems are resolved as 1if all tie meanurements

re perrorme ! directly on the surface of the reference-ellipsold,

o0 DEVELOSSEND OF RUDVULEDNY ARQUC CHE MATHVLATICAL F1 0 Jxi CF &F YARL

Jontemporary views on the tlgire of the Rartl take thelr teginninge trom 1.
newtoen, whe f'or tne rirst time tad, on 4 tasls of rne law of wniversal pravitetion
expressedd ng o thewm oot geometric rifire of the Farth is the resil' or aerlon o
WO Corees, the furce of cerreztrial artvreasetlon g of centritviyul Yoveoe,  Dvan,

pirely gecretric pprenci, et gaestion f dererninution o s Ehmare o e
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Attty extsudrg prior to Xewton, was put to an end. Cons!idering the Earth as 7 uniforn

tely, fnowilen 41l particles are mutually attracted, and taking ratioc of centrifugal
oo e Lie fopse nf‘gruvity on the equator as eqgual to 1:2H0, NHewton obtalned 4
vitae of 113 for compreasion of the earth {(17865), HKesides, us ke neted, 1120 value
shonald denrenge, §f the denatty of the masses lnreases toward the center,

A contemporary of Newton, Dutch sclentist Kh. Gyuygens, considering attraction
GitotLe barth not from separate particles of her mass, &8 follows from the law of uni-
verssl gravitation, but from the center and taking this for ratic of centrifugal
turre 1o pravity on equator received the very same number as Hewton hed cbtalnes fur
cory ressaon of the earth 1:578 (10&8), that is half of 1ts actuml velue,

[nus, av the end of 1T7th Century without any direct measdrements or whe Surihfz
surtace, tvwo extreme limits for the compression of the Earth were obtalned, dean~
vhille, the real compression of the Earth could cnly be determined from materials of
4irect geodetic measurements, The French Academy of Sciences, founded in 1666, undere
took such measurements under the leadership of the famous astronomer (. Picsrd in
1653, Although the measurements of Picard were the first in thiz direction, before
thelir fulfillment numerous and very important for that time inventicons and instrue
mente, such as for instance, pendular and spring timepieces telescopes provided with
crosshulrs microscopes, cylindrical levels, and vernlers etc. were already utilized,
Pi¢ard considerably improved the methods of triangulation, originally proposed by the
Dutch scientist Snellius in 1615,

Results c¢f measurements of Picard and his pupils, published in 1720 by the
French Academician G, Cassini, showed that within limits of France the length of arc
of a degree on & meridlan decreases to the north, as if it testified not about com-
rression of the Earth at the poles, but of prolateness.

This contradiction was brought forward in the beginning by Cassini hinself and
then successors as refutation of the theories of Newton and Huygens, since neotual
measurenents were considered very preclse., However it was estatlished that the error
of' thc measuresients themselves was so great for such short distances that they wholly
can cover ihe influence of compr2ssion of the £arth. For clarification of ithic and
the evaluation of accuracy of measurements of Plcard new measurements were reyuired,
they were undertaken by the French Academy of Sciences in 1735-1743. Two arce were
measured near the Equater, in Peru, }°7' long and in thn north of llorway, in Lapland,

? lonz. Results of these measurements confirmed the correctress of the theory of
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dewtcen 4nd cimultaneously indirectly showed that the hax}n is s heterogeneous tedy,
glnce compresiion a8t near Equator measurements wags obtained equnl to 1:2314, anl nenr
the yoles 14 wus 1:214,

Vde, Al of Lhe major nutural-science proklems atout Tarth, ramely the deters
minstion of its size and shape, was solved in 18th cerntury by the results of geodetic
mepsurenents, French mensurements Yald foundationsg for degree measurements along the

meridlan, which began to be rapidly developed from the end 18th Century in many Euroe

renn stutes, Somewhat later, with the invention of the telegraph, degree measurement:

alory, Lhe parallels begsn,
Elgiteenth century 18 also famous for still other facte, in the history of geod-
% ecy to purely geodetic method of determination of compression of Lhtiﬁﬁrth were added
: other methods founded on theoretical positions of celestiul mectanics and other sci-

ences, The famous A, Clerot member of the French Academy of Sclences and participant
or' the Laplandian degree meaaurement, obtained an equation In 1743, which showed tiut
witl. the ald of a dlfference of gravity at the Equator and the Pole it ls possible to
calculute compression of the Earth., Delambre investigated dependency between the
flsure and distribution of Earth mags«es attracted by the Moon and the 3Sun. LaPlace
at tne end 18th Century found perludic terms in egquation of the motions of the Moon,
which: ure conditloned by the shape of' the Earth and distribution of masses within it.

In the second part of the celestial mechanics LaPlace on the btasis of the theory
o Moon's motion and results of meapgurements of the force of gravity obtained a value
ror the compression of the Earth, approximately equal to 1:300.

Lat'lace simultazneously indlcated that actual mathematical figcure or tie Farth
canno? exactly coinclde with “he prolate spheroid. de made this conclusion on the
basis of materfal or triansulation, at which deviations of the plumb lines were re-
vealed, far exceedinr the errors of measurements. Thils served 8s 4 reason tor the
derivation of the well known Lairlace equation, glving difference of peodetic and ag-
tronoxival azimatis,

ln rirst half of the 13th fentury several attempts were mude 1o oftairn from tie

claterultjon materfsl the value of a major semlaxis and compression of terrecstrinl
ellipscid. The most egsential contributlon in thls was made t» the Rreatest ‘ernan
astronomer and ;eodesist F. V. Fessel (1784-1d4¢). 1In 1641 on the basis of n troroa
treatmen! of triangulation materdadl by a metlod of leas! squnres hessel aobt-ined

values jor major semiuxis of a = ~2*77247, and for compression - = 1:Z239.14%. lor :is
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ierivatien Pessel uged the Enropean degree measurements of 'ue reneral extent of

oot S?U, where tre preater welght in his treatment wag given the part of ‘he tri-

st ilation, carried out under direction of the great Russinn astronomerereodesint
. T, Jnruve (1793-13;_4)‘
Irie Lo great sclentific authority of Bessel, his elllipscid was used In seadetic

work lmost everywhere, Even now Bessel ellipgsoid is used as s reference~ellipaotid

in certaln Furopean countries, Ti1l 1941 Besscl elllpsolid was alsc sed as a

R

reference~ellipsoid 1n USSR, Investigations of F. N. Krasovskiy (1878-1348) showed

&
220

that Pessel major semlaxis for area of USSR is approximately B850 n less., However Lie

&

value of compresslon of his e¢lllpsoid even now is considered one of pesr, 2

Work next in importance in this area is that of a well known English geodesist {
A. Clarke (1828-4914), author of work "Geodesy", translated lnto Russian by V. V. b4
Vitkovskly Ln 1890, Clarke twice, in 1866 and 1880, developed an ellipsold frov. Eurow
pean and Indian triangulation., He used material of degree measurements of Struve
extending 25020' along the Indlan arc 21°5' long and a series of small arcs of general
extent of‘about 75°.

Gieograpnic location of Struve arc and Indian arc are such that due to the pres-
ence of significant latitudinal waves along these arcs, compresslion according to
Clarke turned out to be exaggerauted, while tne value of the major semiaxizs was close
enoul to contemporary values:

a = 6378206, @ = 1:23% (1866)
a = 6378249, a = 1:293 (1880)

In the beginning of 20th Century several major Rusglan Geodesists proposed adop-
tion as a reference-ellipsoid for Russia a semiaxis according to Clarke (0378243) and
compression according to Bessel (1:299.15),

Clarke 1866 ellipsold is used in geodetlic work in the United States, Canads and
Mexico, and 1880 ellipsoid is used in France, Union of South Africa, and in certaln
French Fussessions in Africa.

Arter Russian geodesist F. F. Shubert (1859) to Clarke also belongs one of the

derivations of trlaxial terrestrial ellipsoid.

In tne ninetieth years of the past century Russian geodesists protessors :. A.

Jludskly (1541-1897) and A, M, Zhdanov {1858-1914), completed researc: or. derivatior

of parameters of terrestrial ellipsoid from Russian triangulation and as na result

chtained: N
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Jludskly -~ & = A277494, a = 1:297;
Zhdanov — a = b377747, a = 1:209,

In the 20th Century research on derivation of terrestrinl ellipsold continued
in furope and in America., 1In 4907 n well krown German geodesist b, i, Helmert {1 47~
117, author of & two-volume fundamental work on higher ;eodesy ("Die mathematisci.en
und phyetkalischen Theorien der hiheren Geodisle" Tneil I and LI 1840), divided the
problem on derivation of parameters of terrestrinl ellipsoid. iHe proposed to derive
compresslon from measurements of gravity and adopting it, derived a major semiaxis
tfrom triangulation, By this method, heving asbtained compression of 1:298,3, Helirm r:
determined the value of major semiaxis at a = 6378200 as & mean, obtalned from materin!
in kurope and the United States up to 1906, Helmert's achlevement is in that he
carried cut the ides of Joint use of material Of geodellc and gravimetric measure-
ments,

In 1910 American geodesist Hayford treated material of ext-nsive astronomic-
geodetic net of the United Stutes for the purpose of derivation of terrestrial ellip-
soid from American arcs, Hayford in his investigation used a theory of isogtatic
compensation of Earth's ¢rust. This theory assumes that the insufficlency of density
of masses in upper layers of the Earth's crust ls compensated by surplus of density
in lower layers to a determined depth, called the depth of isostatlc compensation.
According to this theory, for every section of Earth's crust it ls possible to accept
thnt the total mass in an individual vertical column, from physical surface to a cer-
tain internal surface, below which there exists a static equilibrium, is approximately
constant,

With the application of the theory of lsostasy Hayford obtained:

a = 6378388, a = 1:297,

Value of compression usccording to Hayford coincided with the value of compressici,
ortalned from data of measurements of gravity, which was then considered tie mos! re-
114ble,  (herefore in 1324 the Jeodetic Association of International Geodetic and
deophysicul Union (MGG3) gave preference to Hiyford derivaticn and adopted 11 as u
Irternaticnal ellipsoid, In geodetic literature the Huiyford ellipsold is called in-
ternational ellipsoid in the west. 3Series of geodetlc tables and instructions were
composed in the west using the dimensicns of this ellipsoid.

Investigations of ¢, . Krasovskly and A, A. Izo'ov showed tha' there 15 no fo.r=

dation for endorsing Hayford ellipscid tor general internation:l valie, since during




Lis derivatlon Le used trianpulation done only in the United Otates, Trianeul:at ion
1r UGS Las greater welght than in the Unlted States,

I'o §i. Krascvskly studled the problem of derivation of paramerers of terrestrial
ellipsoly guring almost all of nls scientiflic endeavor, towever nis iirst oetter
founded derivation pertalns to a perlod of 1931-1334, His work on thls prollem In
the torm of separate articles were publlshed In the journal "Geodesist" Ne, -, 7, 1.,
11, and 12 1lu 1936, In his Investigations F., N, Krasovskiy used material of ex ensive
t.elengulation in USSR, the United States, Western Europe and India. Furthermore, r.e
used materials of sravity measurements.

From shown material and taking into account corrections for triaxis he ot!ulned:

a = 378200, a = 1:208.6.

F. N, Krasovskily considered that 1t is doubtful if his derivatlon was erronepus
in value of semlaxis more than $100 m, and in the value of compression more thian orne
anit in denominator.

Research on the problem of the figure of the Earth in USSR continued at TsNIIGATK
under direction of Professor A, A. Izotov and at the Institute of Theoretical Astronomy
ot the Academy of Sciences USSR under direction of Professor 1. L. Zhongolovich and
after publication of the work of F, N, Krasovskiy, A. A, Izotov in his investigations
fully utilized the method of F. N, Krasovskly with addition of new important triangu-
lation in USSR (he included all the valuable materlals, obtained up to 1342)., Com-
bined treatment carried out by him of geodetlc, gravimetric and astronomical muterials
in lurope and the United States with introducticn of isostatic reductions gave the
r'ollowing values for the parameters of biaxial terrestrial ellipsoild

a = 6378295 ¢+ de m; a = 1;298.4 £ 0.4,

On the bazis of the same materials parameters of triaxial terrestrial ellipsoid
are obtalned:

mean radius of equator a = &378245 m,

mean polar compression a = 1:298,3,

eqgatorlal compression £ = 1:30,000,

longltude of the prime meridian 10 = +15° from Sreenwich..

These conclusicens, taking lnto account geographic disposition ot 1tillzed peg,
method o1 treatment and analysls of materlals are at present the most foinded rnd
answer thie requirements of strict mathematical treatment of extensive astroncanicnl

codetic nets tor derlvation of parameters of terrestrial elllpcvid, Tutgegiens
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olentivie lanvescigatlons In USsi snd rorelgn countries detinliely indleste Lot Lie

errar in nujer semnlaxtls of Krasovsrly ellipscld does not exceed 00«00 m, and in

conpreszicrn 1 unit in denomiustor,

Tow aell ospown Austriun gevdesist K, . edershteger [(13950) toklng Lito acco nt

e

correerions 1y rediactlon of bases on the surfgce of the reference &llipscld, obinired

rafor senioxds indtvidunlly tor Yuvope and Americn correspondingly “A7500d nned o ATT

s wonparing bthese resulls with the mojJor =emlaxis of prolate spherold of Kyaerovakiy,
we Sree tielr colnellence, Uiving these ddata in the latest publieation of the well

knowrs "Inztruetions on Higher deodesy", by Jordsn, its chief editor and co~-antharp
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Knea .51 writes in introduction "VWery good confirmation of the results

hy lLetersnteger are presentedl by the prolate spheroid of Krasovekiy (a = (3Thean g
1= 1109540,
krsulis of observatlons oI motions of Soviet artificial Tarth satellites aluo
contire this Jderivation with indlcated degree of accuracy.
in 190 Prevessor I. 0. Znongolovich obtained from the treatment of results of
at-tervations of rotation of three 3oviet satellites tor coapression of terrestrisl
Spreereld the value of 1:293.7, with an error in denohinator of 0,1.1

I 1401 American scientist Yu, Kozal using materianl for compressic.. O Lerres-

trlul sphercoid [ron American satellltes ~btalned 1:298,31,2
imuas, trom 4 October 1957, when USSR launched the virst artificlsl earth satels

B 1ite, 0 new epoch wus opened in the stuily of the figure of the Earth, a new powerrul
sl ownat 1 especlally lmpertant nn uesolutely independent metiiod of resolution at
thi predlen was abtained,

1w
iy

-

w Inuneking of artificial s:tellites and space rockets very exanct ealuy

.
il

A

tions Cfor determinstion of trelr orvits are required, In these calcula*ions various

geoeptysi-oal, astrononlcal ar geodetic constants are applied, in a aumber or t-en o

waJur semiaxls and compresslon of terresirial spheroid play o overy Lavge ol e
Tinsieeor neous™ oo the

pge values ty related sclences glve valustle materisl tor sye, -

the Jegree of rellatility of determination of these values by diccde 10 g oo

\
Liporessor 1, 7L Zhongolovich,  Experlience in determinatlion of certain paruweter:
o the Fopth gravitationsl fleld trom results of observation or satelliten 1997 A,

198 . 1058 ., Bulletin of optical obszervarior stations or arvirici-«l ¢upr:
1 o

¢
arellies M, 19, no, ?(1?\.

2y rcqi. The uravitarlonal Fleld of the Fart: Dorlved tros »

o Netiane of inre.
. ;o 8 r - . . -~ . .
Soeellltes (T e o gerreneri. ol Jeurnal o, 100, e 1Y,
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Ty the Resolurion of the Council of Minlsters US3R, from 7 April L3¢ tle param-
“eter: of ellipsold {major semiaxis a = 6378245 m and compression 2 = 1:2)8.3), were
14oj.ted ns obligatory for geodetic work in USSR as the most respornding to lts areans,
the ellipsold was named F. N, Krasovskiy In honor of his great gervices to the Soviet
geodesy., The Krasovskly ellipsoid was also adopied for geodetle work of Socialiat
States,  [Soviet satellites]
Results of research on derivaticn of Krasovskly ellipscid are presented in the

work of A, A, Izotov "Size and Shape of the Earth by Contemporary Data" {Geodezizdsat,
1953).

Ry now the results of geodetic, astronomical mnd gravimetric meagurements eave
correct conclusion mbout the figure of the Earth on the whole, However investigatior:
in this area continue with great intensity for derivation of general terrestrial el-
lipsoid and study of the deviations of the figure of the Earth from correct form of
rotation.

New developments in the problems cf the study of the figure of the Earth the
last 15-20 years is introduced by the work of M. 5. Molodenskiy and his school.

It is known, that the traditional scientific problem of higher geodesy wes con-
sidered to be the determination of the figure of the Listing geoid. Meanwhile, rigid
determination of the figure of the geoid is lmpossible without additional data. For
. obtaining these data it is necessary to resolve physicsally and geometrically a complex
problem: to reduce on the surface of the geold measured gravity, deviatlion of the
plumb line and results of geometric levelling, angles of triangulation and base lines
also have Lo be referred to the geold, In order to rigidly satisfy the indicated re-
ductions, it 1s necessary to know the density of masses outside the geold.

However for the treatment of geodetic measurements it 1s necessary to know not
the geoid tut a flgure of physical Earth's surface, gravity and deviation of the plumb
line on it, also the height of polnts of physical earth's surface abcve reference-
ellipsolid, With such formulation of the problem reduction problem immediately drops
off and there appears a problem of the study actual shape of the Earth's surface,

Thus, the scientific merit of M, S, Molodenskiy consists in that he introcduced
¢clarity into the protlem of study of the Earth and gave a new method of resolution
of the problem how on the basis of results of geodetic, astronomical and rravimetric

measurenents to determine the shape of the Earth's surface.
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§ 3. ESSENTIAL INFORMATION ON MA PHFMATICS

1. Series
dntority of prohlems of spheroldsl geodesy anre resolved by means of tactoriry-
tion of functions in power ceries according to Taylor, MacLrurin and Newton's bpinomi:!®
Lheoremn, .
e most essentlal pecullarity of the geodetic series is their rapid converiyence
and Sl slternation, In most cases the appllcation of series In peodesty thelr con- .
vergence 1s so evident that no proof ls deducted. The convergence of alternating
geries iz determined on the tasis or the following theorem.

Alternating serles

n.—u,-l-u,—u.-l—...iu.?u“_, (1.1}

(11 nre posirive numbers) 1t converges if the absolute value of its terms decrease unii

go to zero durlng infinite growth of n, wiile the remainder of the series does not

exveed tne absolute value by absolute dimension of the first of dropped terms and hius

i same sign, .

Let serivs:
40 +0 . 4o, 4o, ...,
where:
By,
converges, then 1t Is possitle to assume that:

[
-—’-—"' <s,

with wnls ¢ Is a proper raction,

tunseyuently,

01 OO Uy Oy e 0, <TO0,, (..
Therefore:

Bttt . to, <ol daste'+ 4 49,

but
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that 1lst

Since 7 PN SN SRR Suy Uy +... +upy, then series (1.1) absolutely
converge,

The given theorem is applicable to all slgn-~alternating geodetic series,

Abzolutely converging series allow any distribution of terms of the serles, that
is they converge unconditionally. These series can be added and multiplied, the ob-
tained series will be absolutely convergent. Rapidly converging serles are very
convenient for practical application, since with them In most cases {t ls possible to
be limited by the first terms of the series. However, it is very important in every
instance to determine the order of smallness of the dropped term. The sign of the
dropped term 3lces not have value, but it is necessary by all means to evaluate and
to indicate the order of smallness. In spheroidal geodesy small value of the first
 order is usually considered the ratic of length of are to the mean radius of the
Earth. This value corresponds also to the difference of latitudes, longitudes, and
azimuths, In subsequent account of the course the order of smallness of dropped term
will be designated by & symbol 1y (L = 1,2,.. = order of smallness),

The Taylor formula, Let ws assume that f(x) is any function of x, having deriv-

ative to n-order inclusively.' ' We will designate, a as an approximate or measured

value of x, h 18 the correction or error of measurement of x if x = a + h, then:
P = fe + M= @+ 2 )+ @)+ 776 + ...+ R0}

where Rn(x) is the remainder, which is usually given form:

-2 W
k.t 12 e—hp

here § 1s correct positive fraction, unknown exactly,

In geodetlic serles Rn is a rapidly converging series, therefcre 1t is possible to ac-

cept for it approximately:

Roon oo, : (1.2)
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which simultaneously indicates the power of smellness of the dropped last terr of
seriez,
Convergence of tle series, oblalned by the Taylor rornula, osn be improved ty

menns of change of initial value of the argument, In pairticular, during introductice,

of mean argument a_ = n + we have:
m

.

et bl 2+ 3] rfs 3 32
+£.-.-r‘(a+ -:—)+-:—]"‘(¢+ -;—)-} seee
=il )= ]-rer 1) 5 rlr e
+ 3l g)-grfe+ 1)t

Difference between these two series gives

1) = o+ W)= Lo 4 (a+ —;—) + 5ot 5)+ -

or (1.%»
[+ 8= o)+ Mt 2 [0+ o Y () e

From (1.3) it rollows that in a series with mean argument sil terms with eves
degrees of h disappear, a2nd terms with odd degrees uf h enter decreased by 4,16 ete,
times, Tris principle, introduced into geodesy by Gauss, is widely used In recolu-:.
o1 many problems of splieroidal geodesy.

1 we were to take differences of functions f{a + ) and t{n - b}, we Will ohial

rapidly converging series in the form of:
@+ M)~ fa—k) =24/ (a) + LAY (@) + ... (1.4

In expressions (1.,1) and (1.4) rerainder can te calculated by 'he formil..:

L) ] ‘ .
&-FJ b+-+r SR

Taylor formula can te written in the form:

[+ =10 =A W+ T+ + Sty R,

.
-0~




The left part of this expression is increase of function y = f(x), therefore:
dy=[(s)dxm (0K df w y'ds* = [ (s)4*
and in general
&y = s o A",
Consequently,
bymtyt LartLdrs. +lersn, (1.1

Formula (1.6) has great value in problems of approximation reckoning =nd eslicne

lations,
The Macloren formula, In & partlcular case, when initizl vaiue of varlable x is

zero, that 1a, a = 0, and x = h, Taylor formula assumes the form of:
Fod » o
1) = fO 4+ SO+ SO+ SO+ 4 R (1.7)

This formula is called the Macloren formula.

The statement about evaluation of the remalnder and convergence of seriles is
obtained by the Taylor formula, is also applicable for series obtained by the Macloren
formula, Although MacLoren formula 1s a particular case of Taylor formula, it is
used Just as frequently, as the Taylor formula,

Binomial series, Expressilon

afa—1) aln— N -2 .
Ukapmttmt "t > . (1.8)

has meaning and absolutely converges at any n, {f u ¢ 1, Expression of type (1.8) isg
called binomial series. In distinction from remainders of serfes of Taylor and
MacLoren, the remainder of binomial series can be obtained by direct summation, but
the limit of its convergence is not always known.

The most commonly used binomial series in spherocidasl geodesy, are:

L] ] 1 3
1. v I4+umi -’—Im—'—ﬂ'+1‘-u’—;l‘+...
2 YVicwwl et .""
1

i 2 —_... —— — "-'.-l. -—L -
3 BT | "lﬂ t & |‘I‘ Nl.. -

(1.9}
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boparitemie series,  wplncionship ¢ decimal and witural lossritias of vosi fve
mimler 3 s expreszed by formailn:
go=p iny,
Wie e g e o4 A420a8N of moduins of common lognarithms.,
l+a e .
k(+)-rlu sty -5+t (1,17)
f—u — “ s . 2 -
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Inverse trigonometric series

S =sinu, smsrcsing
Xwigs, sempreigy

smwcnr wrs S4By

] ne

.-mtg:-x-—%{-—":——-—;-'-q-...

u-tn-——:-wn-& -i-k‘l--;-ﬂ'ﬂ‘l"«--

lgsinw e () — 24 Tt Jeen—p{E+ L+ =)

0 %%
‘ﬁv-‘lu(t + %+%§+...)-l¢n+p(%+’-s+%+,__)
btosﬂ--r(‘—';-+§+§- +..) ok

igu —kﬁnu-i-p("—"‘:-!‘{- —‘!'.'—‘sin‘u +£—'~usin'u + ... )
D

u ~ positive and less than 1;

In Vega and Rauschinger tables of logarithms values are glven:

Salgl- o lesnweSile”

T-hs‘-‘g or glgu =T 4 lgu”

cor calculation of sines and tangents of acute angles.
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e. Irigoroemetry
ilane Trigonometry

ihuoy } e eonts s-»-—-_'_’:;';____ ___.;...._L__ LIS

14 g l’l+e!¢'a foseca
m.'hv - g infa -'L-——L..._._....ﬂ..’__..-._!.__ .
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Vidgs $riefs o (1.1
 siotmtmsonnn, ‘
k.- .-.._..-.~,_..... - !—-!-:.....‘:3-..-!_
fosints cite elgs

- Functfon of tie sum and difference of angles

: Sia(s + P msinacosd = cannaing,
1 cos{a 4-’)~m:cu$?siu:sin}.

BB

elg(s P ..‘_'!_'_&.i

ghtegr

When a = 8. sin2s @ Asinacoy s
€082a w cotta —sints
Siga
Wtew 20
- a-l 1.1r
etg2e -f-'s;‘...;_. { }

$ina 4 sinfee 2sln1-'{'—‘- ens--’-!.

Wnen a § B; llnl--:h’u-!sln'“’ -4
E 2

€os34¢05 8 2 2ros "; LI cos’-.‘i".'_

CUSR—L0s e — 23in !-g—’ - sin '—-;-’ .

eaews | a4p . eep .
-—aiens : (85 {Loin

dut-—dn! -‘“ 2
sna 4 aiap [ e )
' 2

Eyler and Meivre formulas

iyler rorm.;ln:

—_—
*’__‘:..T"‘-‘
oty - ..-."..+,_v':_ .

008N & Msinu m ot™

or i{n reneral;

cotan Fisinpu oV 1¥me = {cosu = isinw)’,

- -
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fo= @, 71408183 15 u base of natural logarithms, 1 « V-1,

Moivre Formula

cosmw 4 I9inmu -.(cow + dalnu)" -m‘u—-(: )M"'u dslng ~
—( . )‘eu""u‘da'u-l-

cuu--mnu-(eou-uhu)‘-m‘n-k( : )cos‘"a-hian—-
-( :)ea'" ashn®u— .,

’ whence
' “.,-eu'a-—(;)w'"l-du’c-f(:)cu"‘ aintu—, ..,
oln et = (:)eﬂ"'l-dnu-(;)eu'“’u.th’u+
+(—:—)eu"'u-|h‘--....
where

(1)~ (5)-252 (5)-"=ge=s

(‘l)- le-—l!n‘;’\..-“—ﬂ .

For expression of even degrees of sines and coslnes by cosinec of multiples of

arcs we have formula:

P amcotutisinamp or J° = cosma 4 5in s,
¢ acosu—lsingm g or ¢ = cosmu— isinm,

whence

M=l ptgmettn; pugm Qsinw;
" mknm " —¢" = 2isinmm.
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Firther

m=)‘-b+v)"~u"+c‘+(7)(!"‘o+n"")+(§)(r"’c'+
+"'"’)+~-~+(‘IXn"’c’+p'o‘"')J+...

ur

[E————" LYY o

SRS

(bua)'-huu-;-(?)'kos(m»—?)n-r(:)ko‘(u-i)u«h..

+( s )z:aa--zf)u.

Ler m e 21, that is,m 1s an even numter, then:

tﬂ"u-;;;’:r‘: (?)4-{.:', ) cos 24 4 (.:‘,)cmh-f»....].

3ince cus (90 . ) = $in 2 und coz o (13 « ) = ~cos py ete,,
then:

-~

P 2 S
D s PR L . .

N TR

et

For 23d degrees of sines and coslines

*"’“'a--’—:-'—{(t"") l&u——(t‘“

[} -3

N‘“'l-—-}.-.—‘(.: ')mu-}(:::)m&c +...

From thecs gonernl ‘oersulig e rollews:

] 3 '
Sin%y ne . -?-cosﬁn
Uty - %ﬂnu—%dn&a

PP R R A
dnu-' ’coshi-.eosdu
Fn—3 gnst Liing
sin'y - 5 o 7 $inJu 4 1 3in v
LA S ]
$intu - T cus

) o )“'m+(.:‘,)mm-. .. ‘l

)ﬁnau-i-...

3 ] .
%+ Y COS At o -itm‘lu

fa s
P10




»

PP N '
cosfu -,+’easzu

s -:»cosu + %cus&:

: 3

c“‘“-—i—
o S k3 L

eostu s codn 4 um‘.\a+ “oos&a

+—’!- cos2u 4 %coslu
(1.2:)

L NP ] A 4
cos'u “,+ > cos2u 4 m cos b 4 ncosﬁu

Applicatlon of Taylor series to trigonometric functions:

sin(u +A)= slnu+hcusu-—-;.~slnu--—‘.:eow + -:-:-sinu 4 ...
Sin{y e h) = slnu—bmsu——:—'sinu + -‘;‘-—:osu-t— —:—:—siuu~.p
eon(u'i-i)-ueosu-hslnu——::cosu +~:-'—sinu+ Emu-...

. (1,27
euu(a-k)-eosu+hs(nu~-::coau~-:—:stnu+ -:T'eosu 4...

Wit A) mtgu “:'.+ *:::: +-§"“";.’:""+...

— Y = . Mane & co'u Yot s
Bl—8) = Qu— e+ = — = +...

In higher geodesy designation tg u = t is frequently used

ﬂl(n-}-h)-eosu{ l-ht——%-*-—';'—u— -:—:-— }

LR BT EYTIR PR R LR R | (1.28)

snga + k)= sinu | 1+-“-'--§-.:-+£.+l.ﬁ";.+,,, ’

For exponential functions:

L R -

a"-l+xlna+"‘;""+"‘a':‘"+"‘.';""4... ; (1.29)

. Spherical Trigonometry

Resolution of right-angle spherical triangle

Let us designate vertexes of triangle — A, E, C, angles — 2, B, y, and sldes =

, b, ¢ (Fig. 1).
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Foprmulas

[ C03u » €8 HCOSC;
cosw el detg g
il sing¢
sinBme P22 ginye 225
B sna’ i s’
7
H 3 i L
o -90* coafo 5. ooy 2, .
] B e’ T et
.4k ¢
- 3—«‘ - e *
epm-o Wy “L‘.
[-1.] o™y
Wibe ——: COSC e . .
: any’ np
S ot s
]
N/‘
Fig. 1. Fig. 2.
Right=anzle gpherical triangle ce2u be resolved by two rules, 1f the arms are
replaced vy thelr supplimenis Lo ‘_3-‘)0 ard elements of 2 triangle are disposed circu- .
lirly, 2t is shown in Fig. 2:
First rzle. the cosine »f separate eiement is equal to the product of sires of .
adjacent elemerits, lor Instance:
€050 m $int (00" .~ b} sin (90" — ¢} mm cos b - cosC.
second rule: cosine of the mean element iz equal to f1te prodiuct of cotangser -
gl exrrere elements, for lnssance
cose = clgf- clg .
rneyal rormalis tor RAescliutden of drterical iriangle
Y, Foremalas of coslues of the slides:

¢o8a == c0s b 03¢ + 3in b sine cosa ]
€os b w 008 Cos¢ 4 sina sinc ¢osP ]

—

-

Cosc w €034 COb 4 sina sinbeosy




2. Yermuly of slnes

sinw sinp __u_r_r_ .
slia - sinb sine (1.31)

4. cormulas of cotangents of elements: i

etgasinb s cosbeoss 4 sinvelga
elzbsine = cosreusa 4 sinaclgp
clgesing wcosacosf 4-sindelgy
egasinc = cosccosd 4 sinfietga ' {(1.32)
elgdsingm cosacosy 4 sin- elgd
clgesind s cosbeosz 4-sinaclg;

3'.  Form:ilas of five elements:

singcosB m cosbsine —sinbeosccusa
sinbeosy m gosesing —sinccosacos3
sinccosa m cosasind —sinacosbeosg
sinaeosy = coscsind —sinceondeousa
sinbross me cosa sine —sinacosccos§
sinccos = cusdsing —sinbeosacosg

. (1.221) i

4. Formulas of cosines of angles:

©08 2 == =~ COS B ¢0s 7 -+ 5in $sin yeosa
©0aP o — 03y Cosa + singsinacosd | (1.33)
€087 = — €03 2 €05 +f sin asinJcose

H. Gauss = Delambre formulas

[ [ L] dbie a
sin s cos s - sin . sin? !
sinS . ain BoY o gin 2= o5 0
2 ‘:7 .: 2 . (1.34)
8 & .. 2
©0s 3 eos-——-—’ hm—?—sm-’—
LR L o L5 Ay}
cos y sin s = gus 3 €os 2
dapler's analogles: - ]
=1 =1 *
b4 ¢ oo 2 e, b—-¢ o. 2 .
b Ry T Ak L Al o
b2 “..—t
p+Y 2 LI 1 | L PP}
DY T L B iy Ty ‘
| 2 }

[ome e o R e e e .




U

7. Formula of tangents:

)
ot
-
[y -1’ (1.%)
et Wit
3pherical excess of g cphierical triuncle,
i “.+’+1- 'w'
g .__‘.L.'u‘
i F = area of a trlangle,
R — radins of » gphere,
' p" — number of seconds in radian,
Loy glyglsig st ¢
"o"’":?z":":'
where ,--'F‘_.!_t_f;
g s Auna {1.37)
. 2 2 - , -
3 1 it g S con 14 toese
- A}
» ¢
hetgy o
Spherical excess of right-angle spherical triangle when a = 909
o » ¢
By-ky-ey {1.38)
4, Differentixld Geometry
Plane curves. Eguation of a curve:
in implicit form F(x, y) = o,
in evidert form y = r{x),
in parametric form x = x{u), y = y(u), u !s a parameter,
The last rorm or assignment of curve is more frequently used in spreroidal -
geodesy.
Depending upon the rorm of asclgnment of cirve difterential of i'sg are i
expressed:
lL@alVity' & o r ymitx);
L 6-Vr'iy & or rmxt) yeyla)
: - €.
TR T .




PR it

Curvature of o plane curve T in a given polnt I 1z called the limit of ratio of
Lthe angle of contiguity ~a {angle between positive directions of tangents at points

. . . ] (v
Pi and i, - Flg, 3) and length of arc P1P2. when b P, = 0

e da
Kl =a

%

Fig., *. Fig. 4,

Radius of curvature R at a given point P is called value, inverse to curvature,
that 1s:

Curvature X — 1s positive, if the curve gt a given polnt of its concavity is
turned to axis x (Fig. &).

In grid coordinates:

S
K=z a+ o

R-g:.l'_tgl"_'. (1.39)

Space curves. FEquation of space curve in parametric form:
or swxp) ymylu) 2=z
2emx(s) pmp(s) zemzs)

where s - length of arc of curve,

Differentlal of arc of a space curve

és=Vir+ 42 au,

At each point P of the space curve are determined three straigi' linec .ng ttree

planes, mutually intersecting 2t P at right usngles (Fig. 5).

Straight lines, Tangent is a limiting position of a secant (Hir. ¢ ). .Prinvlphl

-27-

i

TSR

” o it




k) 106 4 1Y QTR 50 B8

P

ey

hesen

nangl

»

nornal 1s the intersection of normal and osculating planes, Blnormal iy o strafghr
1ine, perpendlecular to osculating plane,

Planes, Normal sre perpendiculsr to a tan-

biroreal Linearicatior
A/ plass i
¢ zert, DOsculating, s llwlting position of x4 plane
‘
N— H meuins tng passing throwh three close pointg of 2 curve
plars = H plane .
I 3 g, w14 P,, wien P, = P, and P, = P, (Fiz, =»),
sttt Iy POt il ByP. 1o wien Py = P 2= Py (Fle. )
.'T N Priccinal Lincariziu: - contalnlng tangent and 1 binormal,

.t __J (AT ¢ .

P frese trree straistt lines together with
Targent the plunes cornecting them form ar accompanying
tril.edron of a space curve,
Ir for tue axis of coordinateg the tangent §s taken, the principal normal and
tinormal with origin of coordinates at point P1 of space curve, then coordinates of

the other point PZ, of the curve will be:

Ao § o & P R
sk 22T {(1.4)
Fig. €. T T ) .

where:

»

1s the length of arc of ii.e curve iLeiweer polnLs Pi and P?,

k- padias o curvatuve of spuce eurve,

T - torsion.

The eurvarure ¢f space surve st s siver poin® 18 ealled numerical characeris: v

of det'le-ction or tre curve from straight line in sn area of 2 given polu® of tre

curve, i 1s calculared vy tie rormulas

KV e, Rat

lorsion of space curve art o glven polnt is culled namerieal ctarpereoricele ot .
deflection of 2 spucr curve Yror pisne carve In an arvea of u glven pelnt.  lun probe

lems of spheroidal geodesy *re curvatiare and torsicn OU Spacs Curde wre rapre ], iren,

. SR 3 .
In tormulas (1.403) the valies of K, and %3 wre takel Woere oo 0,

curface.,  Eguation of surtuce lo glven in e followln 70 s
salilet.

P o sl . . - . .-
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F(x, ¥, 2) = 0 i8 nonevident

z = r(x, y) 18 evident
x = x{a, vi; y = y(u, v); 2z = 2(u, v} are parametric,

Dift'erenitial of arc or first quadratic form is:
89 = £ &t 4+ 2F duds 4 Gdv®, {1.41)
where

e= (&) +@V+(E)

LEF -2 3232 - (1.41)

o= (&Y + @)+

TR SE 2 S B o B S S

In spheroidal geodesy orthogonal system of curvilinear parametric coordinates

is uged which form on the surface the graticule

. &= EdS 4G (1.42)
Designating l/-f— du = 41, we obtain:

Curvilinear coordinates (t, v) are called isometric. The isomecric 8ystui o
coordinates is characterized by the fact that they form on the surface a grid of
squares with sides /G dt and VG dv, VWhere dt = dv regular squares are obtained, hur
they are not equal to each other, since G is a function of coordinates of a given
point,

Through each point of surface it 1is possible to pass an infinite number of
planes, passing through the normal to surface at a given point, These planes are
cnlled normals. Plane curves, obtalned as traces of intersection of these planes witl
a surface, are called normal sections, From normal sections two mairn mutually perpen-

dicular sectlons have essential values, one with the greatest curvature % and the
in}

<

other with the least % » then the curvature of any normal section can be expressed
1

through curvature of main sections by the Eyler formula

A _cwtd | wnA \ :
N +-——-—... (1.44) X
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Where A = atimuth of a glven normal section.
Besldes the curvature of a normal gection, {n spheroldsl geodesy Gauss curvatare

18 useqd:

[
K=z (1.45)
and mean curvatures
[ 1
Ko = H ('n +R|)' {1.4%)

In certaln problems the following formula is used:

where
Jﬁ;ﬁe is called mean radius of curvature,
The geodesic, Through each point of the surface P{u, v) it is possible Lo pass =
line in a glven direction which will be the shortest between two points, Sucnh line
is called n geodesic, The material polnt will move on the surface along a gecdestice
if external forces are absent hampering its movement, Elastic thread, stretched
along the surface, takes form of a geodeslic.
For spheroldal gecdesy tie following determination of geaodesic is more essential,

Geodesic on & surface is a type of & curve, wnose principal normal at a given

point coincides with the normal to the surface,

Let us take the inltial point of the geodesic P1 for origin of coordinates plane
xoy colinclding with tangent plane at point P, then coordinates of point P?, of geodesir
will be equal:

Amscoald— — oAty ...

(T N
1
'-3“13‘-—;—‘?8‘"‘5‘-{-,..

where

§ --arc of geodesic between polnts Pl and P,

A = azimuth of geodeslic at Initial polnt,

-30.
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“1 - meridian radius of curvature,

32 ~ radius of curvature of first vertical,
R - radius o curvature of normal gectlon at azimurh A,

Geodesics on the surface play a role Lo 8 certaln degres of
straight lines on a plane, therefore many poslitlong of differenti«]
geometry on a plane can be generalized for surfaces with subgtitu.

tion of stralght lines by geodesic, One of such generallizatieons

is the understanding of geodesic curvature on a surface. In sol.w-
“e. 7. tion of certain problems of spheroidal geodesy 1t 1s very expedie:n’
to start from consideration of geodesic curvature,

ieodegic curvature of surface curve is called rstio of angle of contijguity di

the element of arc ds {Fig. 7).

P
K=o (1.47)

In curving of the surface the geodesic curvature 1s not changed. 1If all three
lines P1r1, P2F2 and OF were geodesics, then they would have merged and the geodesic
curvature would be equa) to zero. In other words, geocdetic curvature of geodesics is
always egual to zero.

If normal sections and geodesic (Fig. 7) are projected on a tangent plane,

~ through point Pi’ then geodesics will be stralght 1lines on this plane, the elements

dA and ds will be distorted by small values of the highest order, consequently their
ratio will remaln constant, therefore the so-called tangential curvature 1s equal to
the geodesic.

Projection of curve P1P2 to a tangent plane will have curvaturz of a plane curve,
Consequently, if we designate an angle between tangent plane and a surface at point
P1 and osculating plane of element ds through § is designated, then the geodesic cur-

vature will be equal to the usual curvature, multiplied by the cosine of this angle:
K.-Kcm.. {1.488)

Normal section in initial point has geodesic curvature, equal to zero, since gt
this point the angle § = 90°; in remaining points of normal seccion 3 > 900; witi.

removal from initial point 1ts geodesic curvature iz correspondingly lncreased,
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CHAPTER II

TERRESTRIAL SPHERQID

§ 4. ELEMENTS OF MERIDIAN ELLIP3E

S S R ERST  ¥ k 5 RB SER

Geometric solid, obtained by rotation of ellipse sround its polar axis, is

called prolate sphersid, Prolate spheroids with small polar compresgion are also

called spheroids, Basic elements of a spheroid, determinlng its geometric figure,
are the semiaxis: major, or equatoriszl and minor, or polar (Fig. 8). Let us desig-
nate:

a — major semiaxis of terrestrial spheroid,

b - minor semimxis of terrestrial spheroid,

For terrestrial spheroid a > b. In solution of many problems of geodesy it is
neceszary to use different values, obtained through a and b, such as, for instance,
three compressions:?

—b . —‘. (1] —8
] 2 . = :+.-l (’3.1\

and three eccentricities,! whose squares are expressed thus:

| il B L LT N L e i
0'-'—..—."--—;—'-' e {(c.2s g

these values are connected by relationships:’

ITerms “third compression” and "third eccentricity” while not conven'ioral, are
“used by certain authors (see A. P, Yushchenko "Cartography", 1941, r. 3j wee cnll
"third compression" and "third eccentricity" 2n and oe"? respectively,
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[a) 1
Values e°, e “

-

dmsli~9 ..au-.)....::;:‘.'

L ]
Pzt k] - Lot ol

G+ 4% Tte
7 SO N [11 I N ol
e (—ap (e - '
| . T
--m-'+'_-1_yl-a
am \=Vicea
t+Vica

[}
<

e are expressed by a following symmetric serles throwsh it

Cmdn—0a 4120~ 160" + ...
Cadngbnt 412041600, | (~.
{'-"—w'fw-,“"*'r-n

P

4

Value %~ = ¢ 15 radius of curvature at spheroid poles or

polar radius of the spherold.

[2]
In approximate calculations with an error of 2° it is as-

suned e? = 23, or in a numerical expression e“ = 1:1R3,

In the USSR recdetic work and that of scociallst countries

the Krasovskly ellipsoid was adopted, in tie west ‘e yreatest

use ls made of EBessel and Hayford ellipscids.

Tie parameters of Krasovskly ellipsold:

a == 6 378 245,00,C0

& = 6 356 863,01877 u

&= 6399698,50178 4
s = 0,003352320669
a = 0,001670979181
o = 0,006693421623
¢ = 0,006738525415

Parameters o! bessel

& == 8377397,1 5500 4
& = 6356078,96325 &
¢ = GI0B7H6,84939 &
s == 0,003342773182
# = 0,001674184801
# = 0,006674372231
*m 0,00671921 8798

iga = 6.8047011973

ig & = 5.8032428531

lgc == 6.8061595414
g2« T.5253467466_,,
A = 7.2250453066_
Ige® = 7.8256481823_,
g ¢ = 75285648706 _,

elllpsoli:

Iga w 6.50464 24637
Ig b = 6.8031892539
uc - G.W“SS
Igam 7.52"0%3_“
lgn = 7.223033049_,
g’ = 7.8244104207
Iget= 7.8273‘875:”_“
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arameters of Haytord ellipcol i

a = §375328000 & lgo = 68047109340

& = 6356911,04613 x4 Igb = 58032461938

¢ »s 5339936,00810 8 Igc == 68061756723

# = 0,0033670033670 lga = 7.5272435507_,,
n o= 0001686340641 g n w= 72269453067,
o = 0,008722670022 1ge® e 7.8275417947_,,
&£ 0,006768170197 lg et = 7.804712712_,,

§ 5, MERIDIAN ELLIPSE AND CONNECTED WI(¥ IT SYSTEM IF CULRDINaTLS
ueomet.ric locus of points on the surface of prc¢late spherold, haviv. tdenrtiez}

lonritudes, is called meridian, Plane, passing through meridlan and axls of rovesien,

i ¢alled meridional plane, If a plane of any meridian is taken as iritjal rer con -
inrs longitudes, then such meridian is called prime, TFor counting longlitudes trom tne
initial a plane of meridian, is taken which passes through jreenwich as?ronomiénl
observatory (near London}),

Geodetic longitude of a point is called dihedral angle retween planes of prime

meridian and a meridian, passing through a given point {Fig, 8). Longitudes are
counted from the prime meridlan to the east and west and correspondingly are called
eastern and western: they are distingulshed either by corresponding letrver desifna-
tions, for instance Le - eastern longlitude, Lw - western longliiude, or sifFns., In
U33R minus signs are added to eastern longitudes.

Position of a point on meridian with a known longitude 1s fully determined, if
reodetic latitude B is given as an acute angle between the eguator plane and norsal
to surface at & given point {(Fig. 8). Latitudes can be northern or southern,

Latitude and longitude fully determine the position of a point on the surface of

an ellipsold and are called geodetic coordinates. The system of geodetic coordinates

on surface of a spheroid i{s the more natural and convenient for all surfuce of tre
terrestrial spheroid, therefore 1t is used toth in theoretical .nvestlgatlons, and
& lutlion of practical problems of higher geodesy.

System of geodetic coordinates also has wide epplication In cartograpry. Jovi-
ventional deslgnation of geodetlc coordinates is:

B — geodetic latitude.

L - geodjetic longitude.

In certaln cases, when merldlan plane 1s given ty longituie, it is corver i

in theoretical problems to apply grid coordinates (x, y), referrei tc 1 plane ¢
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glven meridian (pig. a),

Lquation of ellipse with origin of coordinates in a center

1s:

A

o'+b'-" SRS
This ejuntion 3s s2tisfied by substitution

X = goos& }

ymbsinu ¢ (2.%)

¥

wnere 4 — 1s called reduced latitude,

The redaced latitude is obtained by means c¢f geometric construction in the fole
lowing manner,

Deseritiag from center of an ellipse a circumference by radius, equal to major
semlaxis n, extend the ordinate of a glven point y to intersection wlth clrcumference
and connect by a straight line the obtained print with the center of ellipse. The

angle tetween this llne and the plane of equatcor will be the reduced latitude, The

redaced lotitude is also called parametric latitude. Application of a reduced lati-

tude instzaa of geodetic nns distinet advantages in certain theoreticsal problems.
Foultlon ¢of a rolnt on meridional eilirse can be deterrined alseo by an angle,

rormed by radlus-vestor 2F with egqua*orial plane (¥Fig. 9). This ongle it ealled

geocentric lavlcude, JSeocentric latitude i{s used more frequently in astronowy und

cartonrag iy, nd Ln the theor, of the flgure orf ure Farth, deocentric latltude is
Jesignt.d by !,

frem Fige 9 4 tfollows tiaT:

R Tcos® (575
g=r5in® ot

2
lgo- Pt




wy

! S Position of point on the surface of a prelate sphieroid
can be determined by right-sngle space coordinates with a
beginning in the center of a spheroid (Fig. 10). Here the

» axis OZ 1s disposed along the axis of rotatlon of spl.eroid,

and axis CX and QY in s plane of its equator, This system

of coordinates are used in theoretical investigaticons ard
’ resclution of geodetic problemes with application of - hords
Fig. 10. of the ellipsoid, Equation of ellipsoid in these coordinates

is in the form:

“
s
s
»

’
¢
~

VR Ol TR VI v o oL K ERO: Ll

Xxe e o
Ftete-t

e Jouin BT

This equation is satisfied by substitution:

Y=acosusinl
L= bslnu.

Xm=acosueosl,
} (2.8)

since a cos u = x and b sin u = y, then:

Yemxsini
L=y

X e xeosl,
‘ (2.9)

Formulas (2.9) give ties between coordinates (X, Y, 2); (u, L) and {x, y).

§ 6. CONNECTION BETWEEN GECDETIC, GEOCENTRIC AND REDUCED LATITUDE
From elementary triangle P1P1"P2 (Fig. 11) we have:

dx
“a- -.-—‘.
and from (2.6):

dx = —~asinud,
dy = pcosudu.

Consequently:

w-m et
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since:

.“./“"’C‘ )

!

‘ u-Vi—e s (2.10)

then:

Tuking into account that

5i"lll= .—..!!"—__; CosS U = !

g e—— 3
Vig 1w l‘HlFu

and repiacing the value u of geodetic latitude from {2.10), we

obtain:

Flg. 11. unu= VB an2

Vl::‘;lnia . (2.11)

Vi—fdnss

COSY =

taving performed analogous transformatlons for sine and cosine of geodetle lati-

tude, we cbtaln:

sdnB® [ LY
Vicseru

mB“V'mmu (2.247)
Vi-dats

From expressions (2.7) - (2.11) it tollows:

s eces B

. Vi-dons (21
$~ y- ol ~eNein B |* ’

g. Vi—édna

We in:roduce desienation:




8 " 3 v, R
e e s ARG SRR :

Yo Vi—du's }

vl 1<dcotu | (2.13)

where . .

v--l/i':—ci_.

Then

™
1

R Vl—-:dnl

COB Y == .
sn B M2t (2.14) 1

cosh = !l-—c‘eul

- geos B

y=- _'.1.';3_".'.'2.‘. , (2.15)

W~ is called first basic function of geodetic latitude, and
W is a function of reduced latitude, These designaticns are conventional.

From comparison of formulas (2.9) and (2.15) it follows:

x.‘“:-'-.
r-'L:'!z!_ . - {2.16)

2w 8{i ~~e%sin B
| 4

For t‘inding connection between geodetic avd geocentric latitude let us consider

formulas (2.7) and (2.15).

We have

=39
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expressions {2,10) and (2.17) are epplied in rigld reckoning, in certain

cages 1L i3 necessary to know the approximate values of differences (B - u) and (F -
-4).

wel. us assume thatt

Ma—-yd |  dm(a—P) .
Qetigp Wnz M

We degsignate: 2 - B = y, then @ + B = 20 -« y and

sin y = & sin (23 - ¥y).

elng Eyler formulas (1,20), we find

'ﬁ__ P -‘W_‘—’h“l’.

where dmly ~1, e ls a base of natural functions.

Multiply right and left part of this expression by eiy and we will have:

Pl Y s T "o
or
QywmiIn(l + 8 )—In(l +be™? ")
For the right side of this formule lozarithmic series can be applied (1.19):
P L .
n(1 +a)-» T T3 T
since kegi" < 1, then:
_— 3o ‘”.—'-.‘._.L._\ LY ] [P Pl
Jma—j=k Y 2 Y +"?- > —.e
or

a—-'-hin?a—% sinda -‘—;—slnﬁa—...

-
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Applying this general formula %o our case, we cbtain:

gB~tgu . sinA-w M-} -e

g8 gu sn il - 6y t 1 '

gB—tge L ose ) o2
TN L) B+ @) 3-& .

Thus, for difference (E - u) we have k = n, and for difference (E - ¥) corresrond«

ingly k = e 2, therefore:

. at [
B-—u-nun”—--i—dnlB-i- <5 sr6B—... (2.18)

«*

~®o ¢t sin28— o 2 neB—
B—®= ¢ sin2B — S sindB + L sin6B— ... (2.19)

For Krasovskly ellipsold these differences in seconds wlll be:

(B —u)” = 346" 3143 sin 2B — 0°*,2007 sin 48 + 0’' 0003 sin6B — ... .
(B—P)" ~692",627 sin 28— 1°',1629 sin48 4 0",0026 sinGB~— . ..

Differences (B = u) and (B - ¢), as can be seen fror {2,18) and (2.19), attain

maximum when B = 1450, where

B—t)e, =59, (B—®), . ~115

From (2,18) and (2.19) for the most approximate calculations it follows that:

(l—u)"-%f-slnzﬂ—...

@—# =L un2n—.. (2.20)

Sometimes it is expedient to express geodetic latitude by auxiliary angle,

sccording to the following formula:

e41a

. vt A SR RS RO

- L. T -
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Hith introduction of an angle ¥ recording of trirst tunctlon of geodetic latitude

W, 1s simplified thus, for example:

W = £08 %
Geometrlic meuning of arngle ¥ 1s shown in rig. 12, where iﬂ and F? are focuses
of meridian ellipse, Trn 1s a normal &t point ¥, and B 1s gecdetic latitude of point

§ 7. MAIN RADII OF CURVATURE AT A GIVEMN
L PCINT OF A SPHERCID

%
1
:
§
{
%
{
£
i

Through normal of every point on the gsurface of a spnerold

it is possible to pass a great number of normal planes, perpen-

4
r
dicular to tangentiul plane at a given point, Trace of a nernmal
plane on a surface ls a plane curve, called normal section., Cu:re-
g, 12, vature of varlous normal sectiors of a spheroid at a given polnt

is unequal, they have thelr own extremum, and minimum and maxi-

mun values, JSections with exire~oum curvature are called princ’pa’ ormal sections,

Consequently, one of the malrn sections has maximum curvature ‘-1 minlmum radius of

curvature, and another — minimum curvature and maximum radius;,

; Curvature of any normal section 1s determined by a well krcwn Eyler formalsa
{1.44)
t ot A | sintg
s G we— ——
. X, + z,

’

where A — azimiuth of glven noranl section, and Hi and R? = radil of curvature of pri .-

] .
¢lpnl normal sections, Wwhere A = 09 ws Lave R = i and when A = HJ( correcrundir,siy
: o] Y '

1]
[=Y

= = qi. Thus, on terrestrial spheroid orne ¢of princip:il rormal sections coircides:
: ho Yo

b with =eriiinal sectlion, and anoth.er with: section of *he first vertival, in Liierci-
dal reodesy followling designations are taken for radil of curvature of principal
normal snctions: M ls radlus of curvartire of rori il ral sectlion; ! 1s radias or

curvature of a section of first vertical; M und N are applied ir many t:ecre:icul

and practical calculatlons as functicns of lati:ude B of a siven polr* ., ir ¥i;-, 1¢

-4




(%]
. . PePp
of meridlar sectlon; M is radlus of curvature of mer!ldi nal cection

= ds 18 an elementary arc of meridian; K is center of curvature

¥
at current point from elementary trlangle P1 Pip?

a-ma-VT»‘-FEF.;,;/H(.:.i)' Y R

-
b ——
{""'C'B -
“ir. 43, §
%
&y~ MdBcon B g
or §
1 H
M 2 B
=Y 7 (2.22)
From (2.15)
& —et). [ B __snB W
G-t -a -0t g)
but
& _AonBuns
[ | 4
Thereflore
& s(—Neud
a8 | &
Conseguently,
M=tU=  ei—e" .
| & O —etainy?e (’2- 23)
Plane of parallel, perpendicular to meridional plane, is slanted to a plane of
the first vertical, where angle of inclination is equal to geodetic latitude of a

given point (Fig. 14), Parallel and section of first vertical at a given point have
common tangent, By well known theorem of Menier tre radius of curvature of slanted

cection is equal to the product of radius of main section (in this case first

43 ’ |




vertical) by cosine ot the angle of ircllination, that is:

XmreNeosB.

Cr, taking into account (2,15},

”-“L.-—‘-i.LmL-’ s . (:) q“\

! ms mBY W Vi—euns '
N

$

3

. Let i1s crnsider M and N ns extreme values of F,

1, bwnere P = Q
3
. Mnl(l—-f),

Ne=a,

vonsequently, ¥ and il are minimum at points on eguator,

2. ¥nere R = 209

M 2 = §,
Vice

N - -, L.,
=y

-

That 1s: M and I are maximun 2t sphierol Loies,
’ . o b .
Formulas {2,0%) wnd (2,24 assume more syametric form, if in them €° is X3 PSS i

-~

bty e in the rormul-:

— -
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but:
(L) s -l)’ l+¢" .
Vied
Let us designate:
V¥V 147t s et B
Consequently,
Vaw - —— . n
Replacing W by V by the formula (2.25) for radii of grincipal normal sections, we
cbtain:
M =®
.._5. {2,26)
From (2,26) 1t follows that:
.:.-v-,_|+q.t-l+e’eu'a.
Right side of this equality is a value essentially positive and larger than a
unit, therefore at any point of spheroid N > M, The greater value of V2 is on the

1.00674% (Krasovskiy ellipsold). Hence it is easy to conclude

equator and is equal to
of a spheroid has maximum curvature and min-

that meridisnal section at a given point

while a secticn of the first vertical has minimum curvature and maximum

imum radius;

The relation g at each point renders a presentation of deflection of the

radius.

curvature of a spheroid from the curvature of a sphere,

in geodetic calculations M and N are used in the form of expressions ﬂ“, Ew or
P P

" "
ﬁ-, ﬁ—, where the last ones are applied more frequently and for them special desig-

nations are taken:

r.
Let)
-e 1 (2.27)
Lam
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I 1]
whove | w 2yndt 18 o onumter of seconds In g padlan, values {1) nand {2 coengtirare

angles, under whicl. arcs of reridian and filrst verticul 1 =~ in lenpth re seen from
the centers of curvi'ure £ tese curves, Geometrlcally these values express coerre-
spottingly curyature of rertdlan and “irs® vertiecal in seconds per unit of lengti.,

e values of ¥ nd i are extressed in meters, Hxpresslions {1) wud {P) =re called

'
%
!

virst and second weoldetic values, These values are used with indices, for example,

; (13:, i ” (1!m, sienifying *ruc they qre vreferred to first, sgecond and avermre 14'-
: ey, .
¢
g Ir "tatles Por laloulavtion of .eodetle Coordlinates" (Gecdezizdat, 1731-2)! loga-
; ritnms fer values (1) nnd (2) are glven with elght decimal places for every wminire o
latitude from £° no W9,

ir. "Tables For Logarithmic Calculation of Gauss-Kruger Coordinares for Latitude
from 307 to B0°" (ieodezizdat, 1948), F. N, Krasovekiy and A. A. lzotov® give lg 4,

4
with seven ani ly 5" with elgit decinul places Tor each minute of latit:ude,
y .

Vulue (1) or M are used for calculation ¢f differences cf latitudes of geade'le
points and lengths of arcs of rertdians; (2) or N, for calculatlion of lengtis of ares
¢t parullels and differences cof lengltudes and azimuths of geodetic pointe,

Wl.n very approximate cnlcalatlions, assuming M= N = 6-10“ m and p" = ?-105, we .
tuke:

' m=@- 5.
3
é, % er in seneral %_ sive erirvatiure Ot corresvondin,s normzl sections at }lvva roint
H
¢f 1 spnerald,  lowever Trequently 1 nreed arlses to know the curvat.re of u curface
2t oa given polnt, for Lhue in Liyvrer peodesy and in Nigrer mathematics, -, ides is
tndradoed 2iout fall or dauss curvatire, equal tos
. ]
K- u.v"l" = F:
ﬁ- R = avert<v radius cof curvatire, Lt is deflied as ar sverase seoreiric Yerr trom ool-

radi! o curvature 2t a slven polnt, that is:

Ljutsequently tiege iles will re called - "ieodetic tailes

25utsequently wili ve called: "Frasovskiy and lzovtov T ley”,

PR LT
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Averare radiis of curvature is used in the image of parts of a surface of a
stlerold on a sphere or on a plane, during calculations of areas and spherlical #xe-

cesses of flgures on the surface of a sphercid. 1In Geodetic tatles for t)l.e indicnted

purpose are rlven:

PESIE

Radius of curvature of any normal section can be obtained from the Eyler formuln:

LS
™
=

MY N N (

R‘- = " o .
Neos®A 4 Mur* A sin'A - Ve’ R 4 weost A

With error in values of the order of qh from formula (2,29):

Ry= Nl ~xcontAL )

In resolution of certain problems it is somelimes necessary to consider the Enrt:
as a gphere, If this 1s done for very approximate calculations, the radius of a
sphere RO is taken as equal to 537C km., Such a sphere is usually taken in cartography;
its surface is equal to the surface of an ellipsoid. Tor Krasovskiy ellipsoid the
radius of such a sphere is R = 6371,416 kin, In other cases it is expedient to take
R, = 3—3—%—1—3 = £370784,3 m (Krasovskiy ellipsoid).

Radius of a parallel. Locus of points on the surface of a prolate spteroid,
having the same latitude, are called a parallg}. Terrestrial parallels are clrcum-
ferences whose radii are equal to the length of a section of a perpendiscular, dropped
from a given point on the axls of a rotation of an ellipsoid. FEy thris determination
the radius of a parallel 1s equal to abscissa in system of grid ccordinates {r a plane
of a given meridlan, Usually the radius of a parallel 1s designated ty r, conseguerrt-
1y

¢ en B -
= Necos ) = v (¢.2m

-
e’y

SR TR B m%

wris b oy DGR

CYE TP 3

Ve a iy
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%f In geodetic calculatlons r is rarely used lustead an expression &y = —p cos K,
2
¥ P P

r% ls used equal to the length of an arc of parallel, corresponding te the difference
% or longitudes tcr cne second, Value Yo 1s designated by b, showp in "fabies for
". e - p . .

EAR . .

Wi cwsarithmis Caleulation of Gauss-Kruger Coordinates" (Geodezlzdnt, 1959)

Distunce from the center of an ellipscid to a glven point ls designated by p
{Tig, 15) and will be called radius-vector,

From Fig., 15:

’
4

pmVrts, {2.31)
f . | p
: " ,

S— .,“L;;;;I!N-«orr~taking"tnE‘vuluc“of'x and 'y 1rom formulas (2.15), we obe

tain:
.
--‘— 9 — in? wr 2, — —— i
. p 'Vcos Bt(l—~efsin'B =« Y 1—d@ = sini B
but:
Lwtd Lams 4+ L agnis I
[ 4 2 + s LD oy
. Vicee—dsins =1 —"0=dpp_ e L
: (1)
; b Multiplying rformula (1) on (IT) und retalning terms to eq, we find:
o " L] ’
pma(l— L intB 4 5 lntB — SetrintB) 4. (2.32)
Radius-vector is rarely used in spheroitic. geodesy.  .This value 1 uged i reso- S M

lution of certain problems of theory of the figure of the Earth,

We will clarify the geometri¢ meaning of functions of ggodetic latitude W and V

Through a point ™ of meridional ellipse draw tangent PT and exuvend it to the
croeaing with an axis x (Fig. 16). irom the center of an ellipsqld drop to tungens
PT a perpendicular and designate the lengt.. of perpendicular OT' = p, Obviously, .the

iSubgeyueritly these tablos will ve :alled: "D, A, Larin Tables",
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angle between the perpendicular 7 ond the axis x will '
be a geodetic latitude, Let us conslder the projec- g
' ——
i tlion of a broken line OP;_PT on perpendlicular p, . § e e b
. we have ‘ E I
§ i
i
p=xcosB4ysinB é
3
- Ubtaining the value of x and y from formuia X
Fig. 16 i
(2.15), we have: £
§
1 v -+ v v (—L F‘-S'.PB), :: .
|
it
.'_, .
. or: :
! ¢
: . g
: p=a(l —e sin®*B)7 malW, (2,33 :
Pt
hut: 3
§
oW =}V, .
consequently: ) .
- } 5 : B
pm bV, (2.}3') ; ‘Y
: ; oty
) i b
Thus, .
: b
‘ b P
4 NG T
(2.34) :
) R e, L S AT AN
Formulas ( ;!i) glve geometric presentation o‘f"’thé functions of W and V; they -
are correspondingly the essencu of relation or the hngth of perpendicular ? w the
ma:jor end minor um.axes or an elliplold.\ ' R
it v "'\\. e .\ . . 1 i "‘\) .
§ 8‘ TRANSFORMATION OF WAND YV IN DPOWER SERIES A . .
I"uncticns of W and ¥V a.ppear in me.ny theoretical anq practical problemg or - ,
e E . AR
o e | jehge
o ' u o
o
A J e
. ‘ . >
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spheroltic geodesy. For calculatlon of W and V and connected with them values it is

== expedient to present treir series by increasing powers of e2 and e'2.
r; We have:

¢

-

. Weal—esints,

| V0 | 4 ¢ cost B,

3 or:
i IgW® e pIn(l —e? sii® B),

gV =pln(l 4+ ¢? cost &),

Applying to these expressions the logarithmic series (1.10) and (1.11):

LI | L
In{l Tu)= ?n—%—i--‘-;_—%-w».-..

wee wlbhaln:

:' ' !¢l¥/'n-—p[¢' sin*8 + —;-.-sin‘B-i- -;-'- sin*B + '—:-sln'B-t-... ]
-
lgV'-p[e”cos'B- %tos‘B-.-'—;:eos‘B—--‘;-‘cus'B-i-... ]

For calculatlons it is convenient to use even serles of sines and cosines and

to substitute by cosines of even arcs by the formulas in (1,25) and (i1,26), then:

e e s

$in® B == -5.--;- cos. 2B

s2mn:

‘ sIn‘Bu%—-;- cos 23+ —:-cosm : (2.3%)
. % | tln'B--‘%- -—3 cos 2B . % cos 4!!—%0;560
14
A
L
g
' cos'B--i—-{--;—ms?B
' ' cosfBeo 4 L cus oy
i SE v S B g b tus 28 - cusdB RS
. $ B '_3_ .!E 3 1 B
! cos® B m + 5 28 4 -'-‘-ct.uB-}-—icuaﬁB (2.27)

.

With substitution of sin® 7 and cos B (1 =2, 4, 6 ...) by cosines of mul._ts.pl,e_s'

_of ares we obtain!

LR
B
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'”"-=r/--( c'+ c‘+ t'+;l-2¢~+ )+

+ (—;—-c’ X e'+ c’+———t'+ o Jeos28—
_.( 'e'+ ¢‘+ St )coﬂﬂ+
+( : "sa+—¢-+ )cosGB—-—
- ‘: e'+ . )msa }
’ﬂ'-p{(-;— e”——it“+ :,e"+ )+
+(—;.¢"—+¢"+;e f +... cos 2B —
...( ‘—'6-(‘—-— + e" )cos#8+
+( L e'-—e"+...)eosss-
._( Mze"-i—...)eosw ]

For -Kras.ovskiy ellip s'oid:

gV = 0.00072978421 12+
- 0,0007281713931 cos 28 —
—0,000000612 318 cos 45 -
<+ 0,0000000006832 cos 68 —
—-OGNNGMDGIDQOM B,

But since W= V¥T—¢\, then IgW=lgV 4 iglT—clmiy V4 99985416558, Logarithms of
values V are glven in Geodetic tables by argument of latitude for every minute with
ten decimal places, With the help of tables of values 1lg V 1t is pussible to compose
any tables for calculation of radil of curvature and other functions of latitude,
Values of % are given in 93rd issue of the Works of TsNIIGALIK for 10' of latitude

wlth elght decimal places.

) § 9. LENGTHS OF ARCS OF MERIDIAN AND PARALLEL
Elementary are of meridian ds (Fig. 17) is egual to:

- ,(I ~— e dN
d= MdB —————

or:

. . .
$mo(l —et) (28 -(l-e')( i 2 . )
- "-""""” A (2.37) Fig. 17.
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These integrals in elementary functions are not taken in a closed form, therefore
1t ic necessnry to transform w"3 and V"j to binomial serles and then tc integrate

term by term with &« given degree of accuracy.

We have:
§ W a(l ~csin’h) e = l'!'—; etsin?B o+ I Sg0n4 i
: ' 35 e s .
: + i e B4 = asin'l ...,
V<t + e%os’ )~ = .
-] -;— e B+ —%‘— oo B— —?—E—c"cos‘ By -—?;:— Voot —
P .

Jubstituting in these expressions of sin™ P and cos! B for cos B (L =2, 4, 6,

—— e e

A ,..) by tormulas (1.25) ana (1.25), we obtain

V3w A—Bcos 284 Ccos4B—Dcos6B 4 E¢ %8B ... (2.38)
V= A*— B*coc 2B - C*cus 4B — D* cosGB -+ E*cos 88—, |

where:

o 5 . lings

A~l+—f—¢'+-‘§- et et

255
- .2— . — 525 9?'5 .
. 8 Aa'lnﬂ7u2a+mma+
. - 15 68 25
c wot ettt
H _g 3s
' b= 812 e+ mlﬂc‘+"'
E= Ttk
]
: ? For Krasovskiy elllpsola:
' A-IOOS(bIﬂSD
B = 0,0050623776
C-0.0NOIOO?-I.:!
w= 0,00000002081,
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For Krasovskily ellipsold: :
A® = 100168250882, §
B* = 0,00168180230, ;
€* = 0,00000070503, ¥
D? == 0,00000000039, g
E* == 0,00000000000. :
* .
; ' ;
Tak{ng values of W2 and V-2 rrom (.38) in (2.37) and taking in:o mecount that g :
smmw=§uum(mmm-%mMem,momum %
i
8
smafi—ef AT 2 un28 + Lsindp— ZsineBt Lsinab—..} (2.39) ¥
B
AR o £ [l £ . , .
Sm¢e -'-;-——-—’—slnzﬂ-{—-—‘--dn‘B—--—'—smGB-}--i-smaa—-....--}.. e (2.40) o M?_____ _
: ®

P,

Taking B = -'2’-, from these formulas, we ob%ain length of a quarter of meridian

Q = a1 —eQ)A%. For Krasovskly ellipsoid:

e

Q ~ 16002137498 .

A wpnen e

After substitution of values of constants A, B, ..., A*, B*, ces in (2.39) and

(2,40) we obtain

& = 6I67558,405874600 -:"-

~ 16036,4802690885 sin 2B
+ 16,A280667831 sin 48 (2.41)
~0.0210752790 3in 68

< 0,000031 12433 sin o8B

L wBmEas e et e s
.

R TSN

This expreasion is used in composition of tables of ares of meridian. Lengths

of arcs of meridian for every minvte of latitude from 30° to 80°% 'ith accuracy of one
millimeter are given in: “Tables for Logarithmic Calculation of Gauss-Kruger Coordi-

nates” (1946) F., N. Krasovskiy and A, A, Izotov and "Tables of D. A, Leein®,

In these tables are given values of the arc of merldian from equaior tc a parale
In Table 1 values of X are

lel with a given latitude, which are designated for X,
given for latitudes 52°-52°10" from D, A, Larin Tables.

R 74(_3%-- . T e e o
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Table 1

Latitude x s am Corrections

820 8763444, 761 >0, 812 0 ¢
1 765299 254 821 8 1
2 167183, 75, [ 21 H
3 769008, 250 3 3% 3
4 770862, 756 (] & :
] SITa117,.267 310,856 (]
[ TI45T1,784 ofa
? 176426,3)5 814
[ 778280, 832 . [
9 730135, 365 f91

52%1n° 5781989, w12 IO o

{

Note: Here A is u change of ¥ by 100" for
n given latitude where A is interpo-
laved tor an average from the given
and tabular latitudes, and the cor-
rections to A are taken from right
column of table for AB",

_Example, Latitude B = 52°05'23", 6257, are given to find X,
Tebular latitude By = 52°05', then X, = 5772717.267
Tabular increase for BO is equal to Ao = 3090,856
n "

Correction for AB = 24 1s equal to +7

Corrected inerease equal to 8, = 3060,858

" ~
Cerrection for &X = bpAB ©107¢ 1s equal to AX = 730.237
Required value X = 5773447.504 ’
It 1t 18 necessary to determine the arc of meridian s between paralliels with

latitude B, and BE” then, after finding X1 and X2 by Bi and 82, thelr difference is

1
taken, that is: g = XB - Xl.

Fxpiession for the length of arc of meridian for short digtances, on the order
of length of side or link of 1st order triangulation, can be obtained by meuns of
application of Taylor formula with introduction of average argument,

Let us take points P1 and P2 with latitude B1 and Bg.

We designate them:

ABm Bl—' Bn
Bu= (8,4 B)), : .

whence "

'l .a-""é"’“o

B-n 452,

..A'..,,...._,\.-,...'u;.-. m et s ,: \ v




R e A T

_A®
e

Xemx@y=x(b.+ 55 -x(a_)+£_“_ 2 4

AB'(J‘X) +AB' ‘m) -

+....

Designating difference of these ares for s, we obtaln

. BRI 0 F TARERAOS | “"Wsm

Cada
I-X.-—-xl-( ) AB-{-(‘B’ \.—il-.-—-l'... (7. 42) .'
ku'.
g
Here dX = ds, therefore & .
§ i
X i
- e e () M S e SR
$
) DR 714 71 1) ;
et |, g \eB) T v ;
.( FEY 4 ! au,, 72 (=12 432 4 4202)
—— - — ]} — », v22), H
a8 J,, VS, - ol ;
{
b3
3
:
where tm = tg B,. Sign m indicates that the functions are calculated for average i
latitude, Conseguently,
8y~ B 8,—8 !
T L /L. P Y SR L (2.43)
4 L4 . "™
or:
&, —8,) !
= e tha B (2.44)
where:
My
dyom === "' Q=@+ +4d

km is a small value, which can be taken from Table 2.

“55-

T Y 5 Rt s




Tatle 2.

o, b, an L o a0 ‘s, b, an
o* 28,0 45 0.2 53 -27.6
10°* 2.4 % -0.7 54 — 8.6
L 84 a -1,7 85 - 9.3
ol v 4 2.7 (] ~14,0
3 » 14,3 ® -3.7 65 —18,2
R » 9.9 5 -l,7 10 -21,7
»0* 8.4 51 -5,7 » -~26, -
+ 4 0.2 L] —6,6 0] ~28,6
3 .
Formela {2.44) 2an be applled with suiflcient accuracy tor difference ot latl-
.. tudes not mere than »“=7Y.  In cerrection member AF is expressed In degraes,
z o "
7 kxample, Glven: By = 66727 W& 245, b, = 59°57'48.245. Find s by the formula
v
: (0.4
¢
. AB = 4°30°,
R s e b T ot -
' g A'B” = 1,20051501,
Ig (1), = 8,50051687,7
Ig &, = 5,69999813,3
8 = 501185,078
£ B = —1,087
S 501183991
s= 501183983 4 (D, A, Larin Tables).
From Table ¢ it Collows that for dlstances of the order of a side of Lriangula-
x
tlon (that ls, 25-30 km or 1! are) the maxlmum value of correction k[\BO will he atv
* latitude 900, where
; 2389 B8 05 e
o
= For distances less than 4% ki it is possiltile to use correction member f'rom
13
; tormuly (2,44), that is to take:
(e By
$ &7 oS -, i
T {2.48)
or
sm A (B, —B) 1077, (p,u51) .
Am is taken from D, A, La.,in ‘[ables for average latitude.
Example, Find 3 by formula (2.45')
A ]
-...'.‘ .-"".{-M




B, = 55°27°48" 245, B, = 5574250257,
B, = 55°35°19"",251,
(B, — By) == A B* = 902012
3, = 3092,671

sne AmB BT 27806,964 ai.
w

)

In certain cases 1t 1s required on a given length of arc of meridian and lati-
tude of one of 1ts terminal points to find a difference of latitudes:
[y

?
AB--Z—.-JM. ‘ (r, 4,))

Ry this formula thke calculation 1s made by a method of approximatlons, slace

l1s 1 function of mean latitude, In first approximation & is taken at a known lati-

Ll B s dpreshhih

itd o

a4 %m»t*m&a&h«ww

PO

iude on one of terminal pof_lnts of arc ,A af‘-i.:e.r E)btainir'g thP apprt_)xl—mafe average lati-
tude, calculate succeedingly the followling approximations to coincidence of resulis
of calculations of the last two approximations within limits oi given sccuracy, As

n
a rule, second approximation gives the desired value with an accuracy of up to 0 ,001.

Yor obtaining accuracy up to 0".0001 it 1s necessary to carry out three approximations.
Let us scive inverse problem according to data of the precedine example.
Given: s = 27896.264 m, B, = 55°27'48 .245. Find B,
I approximation:

s = 2769G,261 M ;
A, = 3092,603 ;

A B, = 902,01
B,m 55°2748",245 :
2L wmram010 |
B, = 55°35'19",261 i

11 approximation:
&, = 3092”671 .
A B = 9027,012(15'02",012)
B, = 85°27°48” 245
A Bm 18027012
B, = 85°4250~,257,

.

©° © Arcof parfllel. Térrestyrialparallels, as ‘was 'al¥eady 16 s tAVILEEE; THrE the T
circumf'erence of radii N cos B = r, Central angle is the difference of longitudes of

t
terminal points of are, I,!'esignat\:ing the length of arc of paraliel by 8 , and the Qif-

ference of longitudms 1, we obtain

Lhden—ae (2.47) -

iy abedy
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o e

it vty previous: Neos
—r = bh
¢
therefore:
5 byl
(2.48)
Formula (2.48) is used for calculation of arcs of parallels with the ald of

D. A, Larin tubles, where bi is glven tor every mlnute of latitude,
N "
Example, Given: B = 55927748 ,245
2 = 1750 45", 457

TR e TR i L

e ther §eate.” “Mathenatically the calculation of surface

t" = sh4h 4e7
by = 475709.793 (irom tables, p. 6%
8¢ m 050845, 898

Inverse problem, that ls, finding differences of longltudes, 18 resolved by Lhe
tormulad

Ld
P -
b

Examples of calculations of arcg of meridlan and parallel and differences of

latitude and longltudes are given on p, 252-257 "Practicum on Higher Geodesy" Ly

B, N. Knblnovieh, second edition, 1961.%

§ 10, CALCULATION OF AREA3 ON THE SURFACE OF A TERRESTRIAL SPHEROID

Knowledge of an area of all the surface of terrestrial spherold can be necessnry

in examining of certain theoretical problems. In practice a typical cuse is the cal-

culation of an area of parts of u surface of the ellipsoid, limited by meridiang und

parallels and presenting an area of surveying trapezoids or map sheets of one or

areaa of terrestriul ellip-
gold ig based on calculstion of integral described below:

Let us take on the ellipsoid (Fig, 17) an elementary trapezoid dT wit., sides AR
‘and BC or AD, '

AB an elementary ar® of meridian is equal to MdB; BC or AD are elementary arcs

‘Subaequently. the shown work of B, N, Rabinovlich will be numed simply "Practi-
. eum on Higlier Geodesy", -

-58.
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of parallel, equul to:
rd! = N cos Bdl.

Consequently,

dT = MdBral = MN cos BdBd!.

Taking integral from this expression on longitude, which changes from 0 to 2w,

we will t'ind an area of spheroldal zone and, designating it by 2z, we obtaln:

I
:-nimwmsw

or:

By
’ e BdB
"‘2“"{ U~V Ep -

But from (2,21}

esin Bwsind,
€c03 BdB = cos 3 d+).

Consequently:

PR Lol gL N

where b — minor semiaxis of a spheroid.

Last integral is tabular and is equal to:

Lpdp o dosng b
-'ajwq. omsw"'«‘" 'Jﬁ'g

i

r, consldering that e sin B = sin ¢, we obtain:

\ . .-..-{_..___ L g dkesing)
\.‘4, ; T—eup T % In l=esin8)
S .
T
\'.‘n
| R IR~
W v
} i’ .o "In

5 i 95 G TR T TR ARt N ‘ﬁ'ﬁuj A‘,
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roo® From (2.49) it follows, that an area of spheroldal trapezold Is expressed 1n u

closed form in elementary functions, whereas the length of elllptic arc does not.
possess this property. However formula (2.49) is less converient for calculations

than the one obtained by means of transformatinn(1 - e sin2 B)'g intc binomial series,

: We have:
¥
(1 —AsindB) " o § 4 2:23in? B4 34 3in* B 4 4e*sin® B o ...,
: ‘therefore:
e »
x-m'ku + 2e%5in® B 4 5¢*sin' B + 4e*sin* B + ,, ) cos BdB.
Applying general formulu of integratlon
. 1
§sin® Beos BdB w mﬂn“'ﬂ,
we obtalin:
'y 2 3 4
’ - . = - -
: x-!:b'l(siqB-& 3 esin'B 4 s Aunt B4 7c‘sln'B+...), (2.50)
. Placing in (2.%0) B1 = 0, 52 = %, we obtain half of =ll the surface of the
' sphercid. Consequently, the area of all surface of the spheroid will be equal to:
3 3 4 $
ol n-agv{l+-3-¢'+‘¢'+ 1c‘+—°-c‘+...}. (2.51)
- f

g-‘or Krasovskly spheroid

From (2.51) it follows that the radius of a sphere, 1s equlvalent to the terres-
trisl sphercid,

R'-;/:":-—-t(l+-$+'—:‘f—'+'-:i-§'- +o) (2.52)




For Krascvskly elllipsold R = 1371111, meters,

Kadiue of au aphere, equal by volume to an €llipsoid, is derived egual to R:l s

*

- V&% (for Krasovskiy ellipsoid Ry 371410 m).

However actual arez of a physical surface of the Earth ie no' calculated by
Lhese formulas, but by meazns of direct measurements of areas on topograpnlc meps,

Calenlation of conslderable parts of the surface of the Earth or territories of
countries constitutes one of the principal scientiflic pronlems of cartometry.

For convenience of computing areas of surveying trapezolds of gheets of topo=
graphic maps it ls expedlent to use formula (2.50), to transform substiluting slueg

of odd powers by sines of odd arcs.

In accordance with formulas (1.25) we have:

" 3 |
sin B--—‘ sInB--—‘ 51?38.
» 3 -5 Ly
sin*Ben y sinB W sin38+4 m sin 58,

BB sing_ 2L - sin5B—-L
o' B = - sin B — - sin 3B+ - sin 5B— ——sin 78.

Substituting these expressions in (2.50) and replacing the differences of sines

by products of slnes of semidifference by cosine of half sum by the formula:

#in By—ain B, = 23in 220 cop Lot By

we obtain:

gmdnd® lA'sln-gl:;ﬁ- cos B,, — B’sin 3 (B8,— 8,)cos3B, 4 Csin LRV

g(B,—- Bycos3B, ~ D' ¢n -:- (By~—B,) cos 78, + E’sin -:-(B,- (2.53)
—B,)cosw.}.

where
" ] 3 § ]
A _g+_'_¢l+ .i...d.l. .T._Q..!.-—'—e‘-f.,,,- $,0033636057,
1] .l a ’ "
e loploydoay ......" A ... = 00011240272,

Com e d e = 00000016560,
D T+ @ . o= 0000000027,
Ew oz @+ = 0,0000000000,
51a
0 My be—

.
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Maps of a scale of 1:1,000,000 served as & basis of listing of topographlic maps

the Aluencions of trapezold f'rames on a scale of 1:1,000,000 are equal to B, - by

f = 49, Ly = Ly = £°, Area of suck trapezold is calculated by the formula:
g i
H P, .\ eeoss0 ™ '"'T;“ (A’ sin 2°cos B, — B’ sin6° cos 3B, +
¢ . (£.04)
i +C’8in 10° cosSB, 4 D' sin 14°cos78,,).
For map of scile of 1:10000¢8, where: ,

. - By~B =, L,—~L =X
P P,,m,,,-%!A'ﬂnIO‘eosB;-B'sinao'cosaa; +C'sin50°x (2.55)

xcos5H,),

nh?

124061094 .3 km®, lg ™2 = 6,09363561 (Krasovskly ellipsold)

In addition to an area of trapezoid, in practice

it is necessury to also caleculate linear dimensions of

its frame on a map scale, Frames of trapezold are sec-
& (4 .
tions of merfdiens cf arc and parallels, therefore, in
accordance with deslgrations in Fig, 18: ,
)
Flg. 18,

b, . L

(oo LB o0y 22,

AW LT LAY
”'m ™

:
:,:J ((‘),‘ _N(Bv- ’l‘: 100 = aﬂ!a! - 5)".
& - »
Ll
b where m — denominator of a scale, b, is taken from the tables of D, A, Larin for cor-
;_ responding latitude and 4, — by mean average latitude.
& :
? Allignment of sag of a frame of topographic trapezoid is calculated by the
formula:
.
A N, ;-.-’—“-lln 28,

In "Tables of Gauss~Kruger Coordtnates}'composed under direction of A, M,
Virovts, for different scales of topographic maps are given Bys 85 Cy d, and n,

whence and values of these magnitudes are taken,

=H2-

ORISR C

P b
-

"‘%"“;g;“ :
i
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CHAPTER III s

INVESTIGATION OF CURVES ON TERRESTRIAL 3PHEROLD g ..
I. Normal Sections .
§ 41. MUTUAL NORMAL SECTIONS AND AN ANGLE BETWEEN THEM . i
Let us presert the following geometric construction on the surface of a terres- :
trial spheroid. Assume that the geodetic theodolite is set at a point P, (Fig. 19) 3
so that its vertical axls coincldes with the normal at this point and the telescope ?
of the theodolite 1s directed at polint P2. Plane, passing through normal Plni and E

point P?, will be a normal plans at point Pi‘ and its trace on the surface, a curve

a(Plv?), called the normal section:
Moving with the theodolite to point P2 and satistyling the

same construction as at print Pi’ we obtain normal section b,
Curves a and b are called mutual normal sections, where curve s

1s called stralght normal section at point P, and b an inverse,

and at point PQ by straight sectlion will be b and inverze will

’ bhe a,

Fig. 19. We will prove that mutual normal sectlons on an ellipsoid

in general cases do not ccincide,
'
From triangle PiPin1 (Fig. 20) we have:

.|P|- Nysin Bla
OnmalP,—p N snB—N(—eNsinB s &N sin B




) '
Feam triangle PPon..
£ 4 v

a,Py = Nysin 8,
Onyomn Py~ g, = Nysin B, — N {1 — *)sin By = Ny sin By,

vig., Lo, Tat 12 qaeme 1hqt [l? > Pj‘ then:
e 0".>o"|.

vongegiently, normals at polats, not lying on one parsllel, cross axis ot rotation
ol' 1 gpheroid at various points, In general plane ”ﬂpipz’ normal at polint Pi. doeg
vt eolnelde wit: plane 59?2?1, noramal at point [P Thiz means thul belween Lwo
polnts on a spherold two normal sections pass., If polnt Pi lies south of point P?.

R, Lhen mubtial normal sevtions {curves a znd b) are disposed as ls shown in I'ig. 20,
vhat ig, curve 2 north of curve a.

Al euch triangulation point angles are measured between stralght normnl sections.
Therefore, if on site there is a triangle, whose vertexes of angles were measured
tr:en, due to duality of normal sectlons, the figure obtained from measurements will
Lave silx sides, as shown in Fig., 21, where point P? is located further riorth of points
Pi and Y and point P3 is further north than point Pl. Measured angles of each point

are outlined by an arc.

We will define the angle between mutual normal sectlons. Let us
agsume that on a spherold two points P1 and P2 (Fig. 22) are given.
We will pass the normal planes through these polnts as described

above 1and designa‘te segment n.n, by d, then:

d—~d md=0n,—On, =et(Vysin B, — N sin B) m e'N.(sin fy— '5'— sin B,) .
"y

We find small angles el and €os under which segment & iz

seen from pelnts P2 and Pi‘ From n, we will drop a perpendice

B,

ular on continuation of a normal of point Pl' Prom triangle

L
nonghy

v
1.4

A, mdsind, nin,=dcosB,.
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"
From right-angle triangle P:lnenl

4 o B, g
b Sl e ¢

"
From right-angle triangle nyng Ny

fvorf Gl e o

nn, mdsinB,, a0 = dcos B,

EERRE o

n
From right-uangle triangle F'?r11n1

_d e 8,
Ay —dsinfly’

RN

© g

Values of di’ €y and £, for sides of 1at order triangulation are small values of -
the second order, therelore within them it is possible to substitute N, and N, by

Nrn a radius of curvature of first vertical for mean latitude F“l, also:

l!nB,-sin(l;—%!—\_—slnB.'.—-—%icosB.-!-.... :

winlB 442\ A8

‘olnl. :.ln\B_+ 3 ) sin B, + 3 cosB_4..., {

cup.-cos(ﬂ.——e-.—)-c s Ba 4 -‘-!-slna;-{-.... !
. 2 . 2

cos By m :os(B.-}- —A;!-) =08 3, — %—sln Ba+...

Dropping from formulas for d, €ys and €, small values of order eu, we obtain:

)
d= N, *ABcor 3, (3.1) :

A% i A

v e s_nd
s -l.nl.-p';:cosﬂ.se‘.\llc%'ﬂ.. (3.2)

Difference of latitudes of pcints of 1st order triangulation does not exceed

] t ;
20 «30 , In radian measure this wlll be approximately T,%' therefore where Bm = /0°:

TR
I TE Sadeadi
$.100. 108
ra

d o
o =y

67~




Thus, due to smallness of d it ls possible to congider
tre lengths of normal secticns bt and a coinclding and Lo

rake them for the length of are of circumference ot radius

: s
no. Ler as desigrnate the central angle at y by o= ™

Y

then the uangle between chord p1”2 tnd riormal nl}‘1 will be
3

equal 90° - %, The angle between mutual normal sections

-

boand o Will te designated by 4L and Its expression will be

round by means of the followlng construction (¥Fig. 23).
iw, 23, From polnt Pl, us n center, we will describe an aux-

iliary aoorere of arhitrary radius, (m this sphere fo

directions, eusmafing tfrom Fl. determined polnts will correspond. Let us assume thi

to directions F1“2' Tyiigo ?1??. ?1T1, and FiT (Flg. 22) correspond polnts né, n;.
P;, T' and T; on an auxiliury sphere., Connecting these points by uarcs of great
circles, we note that tne great circle n;niP' depicts meridian of point Fi'

Azimuth or u strafight normal section @ Is represented by a spherical ungle

Hll)l ‘ L (o] g v
:?n1l s 4re Ppni it corresponds to angle 90 - %s Arc nyn, to ungle € and,

1 1
t'lnally angle 1 out vertex PE is an angle between mutual normal planes, Tungent PlT

lies in a plane of stralght normal sectlon nifr‘il‘,a and is perpendicular to normal

1 L A |
niPﬂ, thierefore the angle at 1 in a spherical triangle FQT Ti is a stralgnt line,

o '

¥ t 1
N ot ‘ . . 3
S qnd PLT = 20 Tangent P111 lies in n plone of inverse normal section

ot
arce "y

1 1
and forms g right-ungle with normal Pini, therefore arc niT1 = 90°,  Thus, Lhe angle

t ! L.}
between tangents PiT and PiTl or urc T 'I'1 le the unknown angle A between mutial

normal sectlons & und b,

L A ]
From right-nngle spherical triangle PQT T1 we have:

eos(so-_-%- a}.: elg fotg (- 3)

or
lgA-sln-;- el
1
From spherical trlangle n;Pan; by theorem of sines:
68
ARG, A
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As wng already establlshied, &, € are small valnes of the second order, and o are :
o rirct order, Thesetore sines and tanpents of these sma1l values subntivuted oy g
b4
nngles In radians and with errors higher than the second order are shown thus: %
1
. E
. s T
A—-i—o'-’-._.’ (,‘-f} ’
fomesing ... ?
&
L3
nw -
¥
) i e e e &
A--i-aulan- e {%.59) ¥
L ES
!
¥
Accuracy of formulas (3.3) and (3.'_’)') wlll not be lowered, if 8 is subistitutled iy :
a, since the difference (@ « B} is small value of third order. Substituting in {3.3)
and (3.3') the value € from (3.2), we obtain
[ o= e A Bcos* B, sin s,
)
A-%cABcos'B;slm. ;

Slnceo--:\:'-—. AB = '—‘i“'-'-s(with accuracy up to small values of third order), then:
L] - .

. ¢
I"-;"c':eos'B.cosas(n:-——a;;'" cos* 8, 5in 22, (3.4) ; %
»
" e f 1 st e g i
4% mp o cos* B, cosasin. oo o By sin2s. :
402 it 1s possiile Lo uccept M = N i
’ m m* i

In last expression with accuracy of e

Consequently,

" " %
8" ey 'TN..'E.eon'B,sltﬂl-{-... . (3.8)

From formulas (3.4) and (3.5) it follows that the values f and A revert to zero

twice: when a = O and when @ = 9c°. In other words, mutual normul section: coinecide,

if the points lie on one meridian or on one parallel, This conclucion ig Jusilriable
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with the degree of accuracy, that are derlved rrom rarmuly | 4,.4) and (3.9), 1.e.,

Q3
wlth accuracy up to smill valaes ol

Fealdes un oangle between the normal sections, we will conalder thelr 1lnear

A vergenes, which, obviocusly, wlll be maximum tor medlun polnts orf arcs o oand b, Fop

letersliadtion of This value we Wil execate the rollawlng eonat paet [,
From the middle of the chorid P, wo will rectare o perpendleular and cond e
i

Pt te tnersection with o ogurfaee of the aspherotd,  From point Ny (Bl PhY, nae n

‘renfer, we Wil Aleseribe an are of clreumtesrence ‘:’ll')l-',,, mdins N

» “m
[ ) A utd deternine curve polnter of sag b, 1t Ls known that:
Am-lg
Q - = ey
. Eolng )Jimited by smullness o in the first term of ractorlyn-
H

Fle, on,

+ 1
tion tg f Ln serles and tuklng Inte account that o « ﬁw, it in

in
possible 1o state:

2t
Y v

“N. ( .""ol.')

Now t'rom polnt € let us restore perpendloulars to normal sections & nnd b, The

angle between perpandicolars Iy egual to the angle between mutual norvmal planes

(Flg. ™). My length the perpendiculars sre very close umong themselves nnd

A Witk hiph degree of scecuracy anpe egual o polnter sag curve b, Rlementapy e

h boea, Thuear divergence of mutusl normal sectlona, aan be deterptned ne an

are of cireumference of pndius h with eentral angle €, L,e,,
kig, ST S C e e " S
N5,
'-h'o
Subsrituring value 1 and h “rom (3.4) and (3,6), we obtaln
[ ad : X 0
Q--&:-eoslb,slnnma- ﬁreoo’h.ulnh. (3.7)
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Formulas (2.9) and {3.7) are useful by accuracy for lengths of the order of a

side of 1st order triangulation. Table 3 presents numerical values of magnltudes A

B S T T

s (X

[EECPUIGER. SN

Table 3
ixtreme sactmuth] Latitude . un [ 3 q, aa '
4 s 0,003 [ 8] }
:' gl glw | = |3
) Valies & and q show Lthat lor typleal lengths of the sldes of a “riancie of tst+ % -
order triangulation inn USSR, whose dlmensions are 20-25 Km, with duaslity of normul ?
sectlong should not be considered, For distances of 20-25 km they can be consldered K
merging, However for distances more than 30 ki in transmissiorn of azimuths 1t is %
neceasary to Introduce corresponding corrections, %
In order to avold the duality of normal sectlons in general, the geometric tig- ;
ures on the surface of a spheroid cun be formsd either by cnords of normnl sections, ;
or seodelic lines, But for conslderation of these questlons it is f'irst necessary :
to Investigate the most intrinsic properties of geodetic lines normal sections nnd é
thelr chords on the surface of a spheroid, §
f Various attempts in the past and now have been made to develop a theory of sphnr- g
? oldal roodesy on the hasls of application ¢f normsl sections have not succeeded, %
; E

d The matter is thut with identical degrees of accuracy the formulas obtained with ap-
plicution of the geodetle liné are simpler than the analogous formules constructed

' by menns of sormal sections.

3 Recently certain sclentists proposed to leave out the geodetlc line from zphe-
roldnl geodesy and to replace it by chords of an ellipsold. Although this leads in é
! certaln cases to closed expressions instead of infinite series, nonetheless the chord

- .

doaes not pousess the generalization of geodctic llne for solution of all problems of
sphieroidal geodesy., Appllcation of geodetic line in the tightest form tliee spheroidal
geodeny with higher mathematics, on whose achlevements its development 18 based to a

4 signiticant degree, However in particular problems it may become expedient to use

normal sections or chords of an elilpsold as auxiliary values, Therefore basic prob-

lems, necessary for the use of normal sections and chords of a ellipsoid are expounded

below,
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§ 12, AZIMUTH AND CHORD OF A NOBRMAL, JECTTH

Twe polnts are glven on a spheroijd: 1’1 and P, (Flg, 26). Let us as.ume Lhitjy
. <

plane XY coincldes with the merldian plane of polnt ?1. i1.e., Y1 = 0, Conseqguentily,

ror space coordinates ot polints Pi and i",) we huve corresponding expressions:

H
: Xym NyCos B, e 7, Xy = Noeos By cost = rycosd)
Ym0 . Vo= Nycoslysinl = rysindf{
. a ’ » bt
Z.-N.-;.—smB,—r.thB, 2,-,\',—“;sln5,-r,-;;lg8,
i I = dltrrerence of geodetic longltudes of points !’1 and PQ.

- i We introduce s rew syslem of grid coordinates (&, 4, )} with origin at polnt
1‘1. Tungent plane at polnt [’1 1s taken for plane £13; axls € directed along the tan=~
fent. to meridian of point Pl, axis n — perpendicular to axis € and in parallel to axls
Y3 axls Z coincldes with the normal of point Pi' From Fig, 26 it follows that the
angle of rotation of systems of coordinates will be latitude Bi of the point Pl'

4
0.\
4
/
; :v-— 1 3
) 4
A
. Vg, 26, Fig. 27.
P

For obtaining connection between systems of ccordinates (X, Y, 2) and (&, n, *)
i+ we will desglgn Fig. 20 on e meridian plane of point Pi’ then we will obtain Flg, 27,

Trom which:

T (X = Xl 8, ~ (2, —Z,)ces B,

ym Y, . (3.8)
Lo e (X = X ) c08 B, — (T, — Z,)sin B, .

Let us make a normal eection from P1 to Pa; the plane of this section will 1lnter-

sect plane €n by a straight line
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wiere « {s an szimurh of straight normal section from P1 to Pa

<

From (3.8) 1t follows that:

o
tes =~ (Xg=Xy)sin By (24~ 2;)c08 8,

or

Nycos Bysin i

Ny cos Bycos | — Nyces By ain By -s-:- (Nasin By — Nysin B,y ca B,

Let us introduce here a radius of parallel r = N cos B, then we obtain:

g, = sinl -

(cul-—::-)una.-u-.')(ua,_ﬁ-.,.,),..," (3.9)

TFor inverse normal sectlon by means of transpositlion of indices, contained in the

formula of values, we obtain:

- sinl
(eu‘-—:.'-)-lnh—(l--‘)(!u-—-:-:-uﬂ.)ma- ' (2.9')

gy, =

Let us designate the chord of reciprocal normal sections by 8, then wo obtain:
Pa(X, =X )P+ Y42, ~2),

or with replacement of grid coordinates by geodetic coordinaves;

= (Vyco8 Bycos i~ Nyeor BY + N]co' B, sint! 4 -:'; {Nysin 8y —
-Nuln B;,,

onr:

anrg{dn'l-i-(eut--':)'-l-(l—c')'(tac,'——-;"'-tca. "
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Closed expresslons (3.4), (3.9'), and (3,10} can be use:d for calculation of azi-
muths ot normxl sections of elllpsold chords with the help of computers, where tbe
value r should bte chosen rrom D, A, Larln Tables, In which b1 = I-n- are glven witn

Y .
sutr'lctenrt number of declimil polnts, i

Formala for chort ¥, sccoriing to Molodenskly enn he stown in tollowlng form:

(4_1.‘”

F m.N,sin'—:— - '-‘-.—j!(N. sin B, — Nysin B + {Ny— NJ%

wher:s:

sln'—i‘— o sin? 2 ;B') o+ cos By cor B,sin'—;—- R

formals (3,10') is less convenlent for caleculations.

§ 13, LENGTH OF ARC OF NOKMAL BECTION
Foints Iy and P? ure given on a spheroid with geodetic and grid voordinates.
Let us designate angle between chord § and tungent T by § (Fig. 28), and the azimuth
of stralght section as a,
Let us define coordinates €, n and ¢ of puoint P?.
Projecting ciord 3 on tungent T and normal N, we obilein
sections 8 cos 8 and 5 sin $. From Fig. 28 it f.llowe

that:

Emgcos®cosy,
ym3cosbiing ,
ITTY

Tuking lnto account (3,8), we t'lnd

Seos8c08s m (Xy = X))sin By — (Z,~=2) cen B,
Scmdsinam ¥,
150 ® = o (X, = X;) €05 B, —
=2 —{2)sin 8,

or, replacing values X, Y, Z by geodetic coordinutes R nnd 1, we obtaln

L Lcoshcosnm MBI SunBieosd (1= eMsin by conn,
Ce A v v, (3.11)




A -}cosbsln:-g-ﬁ"—:qii- (2,11)
- ont
] cos 8, ovs { cos B (1 — M sir Bysin B, , eon
-—lgin® i w
3 sin 7. + v, H
IS, I and @ are glven then these three eguatlons fully and simply Aeteramine

anknowns }32, 1 and §&,

For thut, the first of formulas (3.11) is multiplied by cos Py, the third by

Excluding from these equutions BE' and 1, we obtaln expression

flor §,
sin !*1, and then conversely. If we subtract the third from the rirst and «dd tiem,

we obtuin correspondingly:
) ANy B, S (cos®cosn,cos B, + sin®sin B,),
'| v, a{l —e¥ (3 1'_’)
g, mbhemi  oxd, + L (cosBcosa, sin Bi—sindcus B,).
v, w, .
3ec.nd terms of right side of formulas (3.12) have definite geometric value,
Let us i:.!roduce a horlzontal system of c¢cordinates, i.e., the zenlthal distance 2z
and azimith @ of chord §, We designate directional cosines § in a system (X, 7, 2) by
ng = cos @, n, = Cos B, n3 = cos y. On a sphere of unit radlus, whleh subsequently
we will call Molodenskly sphere, since it was first introduced by him, point Fi des-
ignates geodetiz zenith of polint P:L (Fig. 29); polnts X, Y, and Z correspond tc direc-

tions of the axes cf coordinates, and 8 to dlrectlion of chord from point Pi O it

On a sphere of arc sx, sy, and sz are equal

correspondingly to the cosines of directional chord

g,

From spherical triangle P, xs (Fig. 29)

ny = cos B, cos 2y = sin B, ain 2, c0s 3.

Fig. 29. From trlangles Pizs

8y m 3in B, cony, 4=c0s B, sinzetosa,,

Consequently, angle & = 90° = z, (let us call & geodetlc height in horizontal

system of coordinates),
Reverting to equations (3.11) and (3.12) we accompliah the following actlons on

Bl R R " Tt T B ROEpyrny
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them: ralse 10 2 sganre Lhe second from (2,12) and add to the squnre of second. sqi-
. ™
tion trom {7.11Y, tre ohtained asam le melriplled (i - ) and Lo wdded to fie square

of the {irst from (3,12), muluiplied by {7 - e?)?. Phent

sad{l — e

Iy a8 eta?
= -..-'.(n-a+-ﬁn;;--“-‘(|~¢-)(|+_ H

—_ 1
[

Pt e——— - f".

t— o

thaepefare;
0,.__'—'!. 812) . - By ),
sin {1 ")) ’N‘(l + €*n))

listead of i‘.’l Intrcduce radlus of curvature of stralght normal sectlion from F-‘j

a4 Ly the formula:

. R S—
M 0 +ajowtey
14 et I o f . L el i |
1+ 3fcuta, » Ui mtcoste, [
R} < cost B, cos?z, we sin' O (sin? B, — cos' B, costa) +
+ 2sin® cos 8 sin B, cos B, cose,,

ﬂno-ii
%

Let us desipnate:

o [ Siu® B, — cos® B, cos®
'( e e )y,
J4 %) cos e,
Ouin2ny o e,y .
v s B
)+ gjes?a,

Therelore:

sind m -’-:- (l 4 py sind 4 ngnintd .- -;— w3intd4 g, (3.13%)

Formula (2.13) has a high degree of accuracy, since it retains the values

« Without decreasing thls accuracy and taking in firat approximation sin & =

we obtain:
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Fassineg from sin ¢ to angle 8, we obLtaln:

.-':L) l(z,)"'a»(..)’“"(z,)'“"(“) +h (2.4

ror determination of the lengilh of arc of normal section trom xj on I’P we fhtro-

dice polar coordinates, As radius-vector we take chord §, and for polar angle — B,

The sguare of nn element of arc In these coordinates will be:

e o dst 4 S0, (3.15)
From (3.14)
sore 2+ L2+ HE el sl o)
or, squaring and substituting in (3.45), we obtaln:
PRNES S e e Be Y

or:

m i R+ E B e e )

+l' d&

Integral of this equation within limits of 5 = O and § = 5 gives us the length

of arc of normal section PZPE‘

We have:

P TSTE e FEVEY VA
+3n(2)+4)

{3.16)

It follows from this thet for obtalning the length of arc of normal sectlon by
given geodetic coordinates of its terminals It is necessary to calculate hy the for-

mulae (2.9) and (3.10) first of all the azimuth and the chord of this section.
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?ormw}a‘(B.if) has Figh derree of accuracy and can be used for considerable disvances

PR

. g% terween the points., In practical calculations Lt is expedient to have gmall tabies

; for celection of “q and Ho LY cergiamesits bj and e Caleulations vy tre tormiln (2,20)
is conventent for -ase witl compnters,

; If one were to allow thut all our preceding reasonings pertain to poinm FQ. f.e.,

et ion from polnt fp to pelnt Fi, then the length of snre of Inverse cection will

re expresgeds

: =-l{i+-—(”>+”\’; +_HT *)+
vEIeTEN e

s &5
- 3 —B)—+...
¥ =+ (B —B)
. . dp ) 2 . n o . !
dlince (32 - bi)ag is a small value of the order €K, tnen the difference = ~ =
will te on tie order of euk”. i,e,, a value, practically imperceptible during the
most exact calculutluns, In other words, trils differerce can be discounted, {he more
; 50, heuauge with the presence «f coordinates of two points Instead of % for terminals
{L {5 possible to tuks F&’ 1,e,, 10 refer this value to polint with a mean latitude,
¥or short distances, on the order of 100 km, the expression (3.16) ls essentially
gimpliried, If 1t 15 required, that s be determined with accuracy of up tc 1 com:
RN (r.17)
=3+ (5 )+l -
i e blggest term 2/i0 (--) is sdiroppe:d where 3 = 200 km 1z less than 3 mm, It

hovever 3 on the order of the length of n side of ist =2rder triangulation, then 1t is

bossible to substitute in the formule {3,17) % ey %, then:

a-?{l-{-%— -;4-)'+l.)- (%.18)

Error from replacement of value p by a in (3.18) will be less than 1 mm,

In Joint application of formulas (3.9), (3.9'), [3.10), and (3.16) it is possi-
ble to resolve the so«called inverse geodetir problem, l,e.,, according to gliven geo-
detic coordinates of two poinis to it distance between them, and also the t'crward

and back azimuths., Only in this case azimuths, calculated bty the formulas (3.9) and
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(%, "), will pertsain to the a chord of the ellipsoid between glven points (Fig. 20),

It is necessory to Keep in mind that If the lengths ot s#res of normal sectlons n angd

tean re consldered practicnlly equal, then 1t is necessary to consider tie dqifferinse

In thelr azlmuths, g
Mg, spherleal trisngle PipP;, in which sides PiP nd i
PPE are arcs of meridlan, different lengths wnd angles nre ;
obtalned depending upon which of the azimuths of two norwil i

gections is taken as basic: besides only the anrle o1 vire polse
(1 — Jifference of longitudes) remalnsz constant, 17 Lowever -

none of the sides of a triangle coinclde with meridinn, then

Fig. 30, two of its angles and all sides obtain aifferent valuies de- ;
pending upon the azimuth of the normal section, taken as initial. In the last case :
the inconveniences connected with the applicalion of ncormal sections as basic lines, :
are more fully revealed, connecting geodetic points on the gurface of spherajd, ‘
Plane of meridians of points P1 and Pe with normal plane Pinipe or Pzngri form ;
a trihedral angle with vertexes at n, and n,. Let us visualize a sprere with arbi- !
trary radius, described from point n.. On the surface of this sphere trihedron with i
ribs n,P,, n,P,, and n,P (Fig. 31) will correspond to triangle PiP'Pé, in which the %

1
initial 1s the azimuth of straight normal section at the vertex Pi' Yor resolution
1
of this trlangle let us find connection between B2 and Bz'

From Fig. 31 we have:

m0 = ¢tN,sin By,

t - Sl —Muin B, :
: =g, . 2 i
t - etos B, . i
; PD w x, v S !

From triangle n1P2D:

'mq+u-ﬂwm

| - w"'"l_ v, [ £ er
| Fig. 31. a8, oD Y . . 2
”,
uB = (1—apaJt i) (3.19) !

B, = (1 ~eYig B, +e~{-:-§:{).
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Fut —-w-i- = gin u, theretore formula (3.19) ean be written tnns:
1

B, ( —~ ety By (14 ern N2 {50
A Y

sinm)’

I pecdetie coopdinates of peinds 3‘3 and 'L, are giver then tie treiangle
N £

: E‘,) aon 0 ((Mig. T2} dul be salved by e rellowing formulas:

$inBsin 1, w cosB, sin
sinGcosu, = —custh <in B ~>sinfl, cus B, cost
sinGain; = cos Bysind { .1

sinOcosy v sin Bl co B —cos Bsin B eond

eosQ < sjn i ey 4 cun BBy cu;ll', cosl

v ldes 1t snould be underlined that angle v ls not the .zimuth of normal soct! i
Srons toulnt b Lo gecint.!‘l. since in subatliution ot 1%1 by P;, In (3.01) we, obvioasiy,
« o

witl not chitain @ inatend or Ty

Let ns assume that line U (¥, 21

is extended till 1t will not be Intergected !

, any merldians at right-angle, DReslignate tie
»

latitude ot this polint by I’-‘\.\. where 1L will i

max bmam thregihour, the extent of e .'15*, fid

{ts contiruation. On auxiliary sphnere we ol-

1 '
taln 4 right-angle trilangle l"j!‘ I‘O (see 11,

" 27,

32), from whicn {U tollows thot:
ilg. 320, Fig., 34, cos B, sing, = cos B,, (500

sin Bysin€, == con B, cos 3,
sin Bycos @, »= vin B,

. [
Arcs ¢ and 01 are plane curves and lie lu a plane of stralght normal sgection,
L .
1f as a basic angle of triangle PP P, 360° - @, 13 taken {Fig. 33}, then by per-

tforming the same constructlons, we obtanln other vulues in substitution for o and 63.

H
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11, deodesic
8 1k, DETERMINATICN OF GEQDESIC AND 171 LOCATLON HFLATIVY
TO HUTIAL NORMAT, SFECTICHS

The shortest lines on any mathemutlcal surfuce are c¢ulled peodesics.  Stralght
on n plane, great circles on u sphliere, helixes on cyllnder elc, are geodesics since
Ly nve the shartest distances on these surfaces,

Two polints on an arbitrary surface can be ronpnected by a multltude of curves,
possessing dirfrrent geometric nnd analytic propertles, I, at any of ihe *lven
points on n surtace tangent plane 1o estuabllshed und on It ull curves puscloy 1hrange.
these polnts, ure constructed Lhen only the geodesle will be o straight live, apsd il
the others will be depleted by curves, Geodesic Jg u surtwes ecurve, having st ench
toint & double curvature., Therefore it does not lie In one plane, PFor the study or
nlane properties of such curves an iden is introduced on un osculating plune, apprnr-
Ing: a8 u llmiting poslition of u plune, pussing In three intinltely close poalnts of &
curve,

Principal normal of geodesic at each of its polnts colncldes with normnl at oupe
race at a given point and lies in the cosculating plane. Thils property of geodesic
nllows its construction analytlcally.

Let us assume that the allgned geodetlc theodollte 1s set on a polint PI so that
e verticnl axlis coincides with normul at the surface of spheroid ut this polint,

We select on spherold a point P, close to polint
P 2

]

Pi' and direct the telescope of the theodolite to
) g @ point Pe. The trace of n sighting plane on the
4 surface is curve a, (Fig. 34), us 1t is Rnown, will

be stralght normal section, We move Lhe thecdoilite .

Flg, 34,
position, with locked plate wo sight the telescope

at point Plg we obtain inverse normal sectlion, and curve b; then, detachlng alldade,
will turn the telescope 180° and alght it on nearby point P3' The sighting plune
wlll describe a curve of straight normal section from‘point Pa to point FB' f;e{{

to point P2 and after gsetting Jt ln a horizontal i

line 8n. Moving the theodolite consecutively from point P2 L0 point P3. and f}om
point Pa to point Pu ete,, and carrying cut at each point analogous actlions, we obtain
congtruction, schematically depicted irn Fig. 34,

Let ue ossume that polintis Pi (L w1, 2 .,., n) are located at very minute

~81.
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Cimate

e3t. distance betwesn .points on a spherold,

distunces cane froe nmnother, sl Littt. thege distunces cun L e

Ome ns osmall e dealred,
then, tonredting polnts Pi Of the curve, we ohtaln Feodenie

. Tt engues pProg 0P oy

between pulnts i
tructlon and determination o

q and

feodesie,  Actun)ly, by
censtriction every olows thpae polnts op }“ Tie In one ple o whden contatag o Harm g
La

Wlie gavfyee 11, medl«n point,  Ip OLher words, pasaipes rowynl,

rvery poln 5" the
Jlhnes are ogeadutine platen, pernendicular ta () surtace, and the eurve, connect. ]y
ftese polnts, 1 a seodealic,

kel Ug note fhatl fap the tonstructlion of u geodesic on slte hetween given points
Lo lg uecesaey 1o wnow o) revtion of 1tg rlrg! clement or an nngie between gtp
ROYEAL "wov Clon b "an Inltia) polat and the first element, of
loention of geadeygtn relative Lo maty

(“lp, &

lpht
vetodesice,

4l normnl sections in general ig ghown 1n

cound A, whers dothed tlnes desfgnate contlaunt.lon of areg oy

normnl gect logg,
On the whole guodesie la alwaye

closer dlaposed to stralght. normul gec

It nalauths or geodesic are close Lo o°
degle Witk yegpeot

tlon along nli
niven pointy,

-~ "
or 90(, Lhe locntlon of P
Lo norweal sectlong is 8omewnnt difterent., Lt thoge enges ghan)
freostudlod at o givep natmoti.,

l""u 5"; l"llzq ’Gq

§ 45, FUNDAMENTAL EQUATTON OF A uEODESIC

Wo derive rundumentsl nquition of « geodealc from Lhe faet that LU Ly Lhe Glhorte

Lel ue tuke geodesle AB, Wa tike along this line an elementury ure dy (Flg, 27)
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atet conntruct 30 an o meridlan ol o paratlel; we obandn oges tler s o
meridian 40 < ddis apd paresilel Q] < il From e iementary rivei s le

trienele AUD we Liove:

MdB = dscos A wnd ridl w= dssin A,

[ Wl et
i'",. s
ds* w AR 4 A0, {2,040
- ¢
& [UTK b

ds e )/ MR LT '4/ an( -“'-,:'-)’+ ra.

et us destpenntbe:

f:f g U=l Mg U g,

Thens
ds. Lt
org
se L,
NMove [ Ud) expressea the lenglth of are of' a geodesic, then it ghould hnve fhe
feast. value, ‘hle is possible at determined dependency between ™ and 1., letf us
asatime that this dependency is given by unalytie function B = B{1), Consequently,
oy other dependency to the some U B+ b, will correspond where b 1s & function
ul' &, which becomes zero for terminal points of arcr A and R,
T'huais, we haves
= fU,
wheret
: [
v -U(B+b.q+-;7).

Avcording to Taylor:

rp g L B W
U'-L"'.» +“ ™ L T

.4‘3” FBA SRR v IO »:."Wo- wlrsmdh 2 3.2, s
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A een .

i
:
:

T RIT R R Co.

L= arbltrarily smail vildae,  Teras of Sighest order W Taylor Tine are oattred,

2inte they are vanlshiingly mlhamte o5 compared te rirst terms, and o farther caleus

it lone cannot play nopare,

Ve iaves

s'es-}j%l'; de-S-‘:’ dy ...

gy slnoe (@ - @Y Ly value sanentially posttive ntoang b, in order that o

crn o be o opeateste, Tt s necencary and suffictent Lo

o N
S-m bdl-}-j.-m-‘-dl 0,

Let us prointegrate the second term of equation by parts, taking:

dJ =db e %ﬁq ~v,
Lroens

L4 " ol
LAYV N A 22\ -
GBM + & bd( ) L]

arg

L a-afor o -

By condition b egunls zero for peints A and B, therefore the last Lern ly ldentl-

enlly o zero, We hnve:
L TTL.A
Ji a-e)omo
In u space between points A und R b 7 0, consequently:

fame(f)es
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therefore:

inveporal of thles eyuation will gives

U
U = g —= = const,
q % ons|
Psite
[ MY
X"
thrne
—gl;‘.’ﬁ'.'.:.-gm’(
or:
AP - A MigH - ” - y - const.
Vagin Vg Me
b

From (3.25)

Vs B Tl

Finally

r8in A w comt (3.26)

Fquntlon (3,26) is call:d the besic equation of the geodesic and reads: &he

-85
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. frediet o tre podlan ar the porale] vy e sine ol avimath oot oenet point of e
- :— Erocdeste cr o gartace GF s ppolane snneroil s onoconstsnt v e, (0 a cerles off
§ pulnts are waken oo noeadeste, tien LA

cannrl
HAAESRAR AR I

Voerm, Yran

the epuatlon (A000) ean ke stated Lo

HITED s

»
;
£5inA, mr sin A e rosin Ay ., (*.27)
Gy in Gilgner peotssy the Cindts sres of peadesics betweepn Lwe priven polnse
nre stadied, Mamely for cachk canes an eguation (?.“F) can be glven, for very tnter-
: esting peowetric interpretation (Fig, 30), We Lnve:
& rein A = sin Ay, (5,28)
]
or:
L P
s .
Rt saAy  MnA,
This known relatlonship ¢ a plane trlangle Lo a theorem of sines,
introdacing the third side nnd the wagle, vppostte 16, we obtaln plane telangle
. ' .
!‘1}‘ [ (vig, %9y,

Y

» ” ATy A

=y Flg, 39, Filg, &0,
where ¢ = gpheroldnl exress of triangle T

Consequently:

For vilue £ there are no closed exnressionrs,

Angler 2t rhic trinumle will compare with ane

gles of spherobdal polur triangle v P, (Flg, 40,
1 1 1 - ’
From o trelanyle PP Pp md spheroidnl Lefangle

i, we hiave:

Ayt A o 1908,
A4 Ay 41 180 o,

lJ,Uq .

1 ¢

Y PO {*.29)
But t'or approximate cnleulations
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Vuote peasitie Lo constder opheroldal telangie Toaong ospherleal el owe will obeaiy

e guperozimsle value of € by Lhe formulud
1 1
u—,—-m—s.m—,—m-a.mu

4+t (90— Btg - (90— Byyeon

vry esirnaving vg 1/2 (o - F’i) teg 1/2 (95 - I';‘) = b, we ohtaln:

. Asing Yy s
= e {5080
urther
Ay+A, . ®
7 ~W-7 (e
. 4
Ay~ A fy—r ’ L8
u [ 4 { - (] ] C'c—!
3 nty 2

A=A 4 A) + L (M- A)
Awl (A 44 LAi—Aa) {=.52)
l—'i'(l"' 1)"‘;‘ ] '

In determinatlon of the 1limit of appllication of the approximate method of rfuleu-
1atlon of geodetic nzlmuths, it is taken into consideration that the difference of
spheroidul and spherical excesses of triangles with equal sides, as It will be proven
In the followlng chapter, is the small velue of third order, Theretore the shown

method can be applied where 1t 1s requlired to know the azimuths wilthin an uecuracy

®
of up to 13 ,

Other application of formula (3.26) consists in that during the resolution of

direct and lnverse geodetic problems it is possible to control the caleulation of

unknown values:

ri5in A, s —rysin -A.

where AP is o vack azimuth of a geodesic, egual 180 + A;.

H
b

13 v Gt

£ SR et

[
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Ar Peamp le o ale lation of Approxinate Jeodetlc
Azimuths by e bormulas (5.:’"’3-(.’:.}?) is Given

Felow
ol 'll‘\'l::L;f ~orralng ] ? Yo
- 1 B, £2°30°17% 6 Saa”
s 2 Hy 54 42 51 LY
G 3 Yl - B)) 18 41 51 waa
k4 I 850 0 - Jy) 17 34 31 % 73
M [ wihem. By 0,385 0, 185640
7 1glaem By o, Mg n,4x436
: [ snl #1201 041420
‘ 9 cort 0.wrniR 1), OhnR2
' I ] 6,05 XL
1] ks 6§, 043142 ",1:37231
12 1o doust Lrang N2
11 wey XD ST [INIEERR ]
" : RS 44227
h 4 { 7 6 1535 "
15 ’ e TRE: 15 KA
i v LEARY PN
\7 sty o A K7 oy 22 14°35'51°
b1 Ay = A)) 272 —5%343¢°
. : 2% Ay 32 58 oty
: 7 Ay 14 43 46 201025
. 2 Ay Mt Ay 245°16°14° 395435
— S 13 £y 18,562 1,13t Prom tsbles of A
. Lar'n, sprgmant By
19 L4 17,92 28,480 rrom tablaes Of . Ay
Larin, negimant
» r—r 0,9 —13,350
2 ot .70 35,612
n Lzh 0026112 0.37487
e
n cig'/ew 2,002 0,204
] IV iy (Ay -~ A)) 052563 i), 0197630
rgtetion sl A = e ls obktalned as s product of two valies, by whose wreltrary
.
choange the product should remain constant anlang o given geodesic. lor meridian, where
A = ) we obtaln ¢ = 0, Consequently, terrectrial meridlans nre geodesics. 0On equa-
N ter r = u, A= 90°, i.e., at any point oh egquator ¢ = a; consequently, terrestrial
vquator 1s-also o geodesir,
) Terrestrinl parallels are not peodesics, This is chbvious, since even on a sphere
i the arc of o parnllel between two points ls nol the shortest distunce,
5

Tet us consider a general case, when a geodeslc takes 1Ls beginnlug from a point
with latlitude B with azimuth Letweer o2 ang 36° (Fly. 41). Let us trace the process
of n chuanpge of equatlon r g¢in A = ¢,

Ky the mensure of receding from inltlal polnt along
the geodesic latitudes and azimuths at all points are in-

creased until the azimuth will not attain 900, latlitude

its maximum (BU). and r its minlmum ry = c. At this point
the geodesic will be tungent to parallel with latitude B“

and will turn toward south; at lts subsequent points the

Fig. 41. latitude will decrease, and the azimith will increase,
-85
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cecotlug more than 900. such charge will occur prior to Interseciion or reodusic wit-

epeiter, weere rowlll attaln o maximam (major semluxle =), and A will obtaly ceoroniy

el e of AL, ln goutlern hemisphere — the passage of a geodesic will tr wortesans, E:
frtoinine o point with maximum negatlive latitude (-Po) and Louchins Lts varslled, 1 i
w111 tarn Lo equator and will intersect it at a point, which dees nol colnejde wine ?
opposite polnt of initial intersectlion of the equator by the geodetlc, g
Clansequently, geodeslic on a surface of a spherold wlll describe an infinirc reme ;?

ber o turns during its continuous extension, starting at any polnt <o ‘i o'y N
rrom 0 to 9¢®.  The picture of a rur of a geodesin on 5 sphercid will ot e oo o, ;
' tte first element will be required for azimuth greatcr Lhan 40, ,,»_
Apnlication of the fundamental equation of geodesic to salntiorn of praectioal o ?
theoretical problems will beocome more general, if the ermetion (3,94) it transrormcid %
litle bearing in mind that: ;
re=NcosBmacosu,

-z

or: §
¢

Ncos Bsin A ma gcosusin A = congd. (.23 ;

H

For finlte sectlons of geodesic, when coordinates of 1ts terminals and azimiths

ab these pcints are glven:

acosu, sin A, m acosu,sin A,

or :

coru,3in A, = cosuysin Ay, (3.24)
Fquation (3.34) can be rewritten gtill thus: il
R0 —u) Mo —uy (3.35) ‘

sna, sind,

Equation (3.35) presents a theorem of sines for spherical triangle with sldes

N - LY 90 - u, and oppoaite angles 187 - A,", and Ai' Let ug Introduce the third




b v

I ERT

T e

stde of this urionple st Lus cpposite dg e Let o qs deciennte nis
side by vy und e wngle . hen the snown rolar seherleal trlanele
WLl nmve o fopn peniecen by g, b,

for eteprnination of o1l elemints oF this trl mwle vollowing:

rormulas of sytericsl trigonomenry will serve

et L sinesin A, = cosuysine
2. slnacos A, = o8y 303 4y, — 3in 4y €08 g COS w
sinasin A, o €os i, sinw

3
4. sinocos Ajm —sin H, €OsSu, 4 oSy, Sinu, cosw
5.

cose = Sin 11, 8in iy + €OS 1, COS p, COS W

[N 153

Ppastlon (TU3E) and corresputading Lo geometrie rigure, can be represented in

et ey Yorm, e,

NycosB sin A, = X, cos B, sin Ay

sin A, sin A,
cos B, v, meosB—. (*.27)

Desfpnating:

sin A Lo tinAy {4, 58
—i‘-—-'--amA,.—i.—’-smA,. Ve ?
we o Ll
€0s B, sin A} w cos B, sin A}
or
Unio — &) $in (90 — B
Wedy A, (3.381)

[ ]
Spherical triangle P, P, (Flg. 43) corresponds to equation {3.381),
Thus, we see thut depending upon the form of recoriing of tundmmentul equatlon

of geodesic it can be interpreted by difterent spherical triangles,

warmane.
e —

P T
N
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therefore:

oy:

Thus,

gelectlon of these triangles should be in uccordance with: fhe

rob-
lem, that {s to be resolved, However 211 these -esolutiors cuar dirfsr

ty torm, tut essentlaily they are invarlants o ane and e onne

solution, whict: can be cbtulred with ti.e help o :an eqguuatios,

L A |
and a corresponding to spherical triangle ?1P [ (see Figm, 50),

Wor deterainaticn of geometric value of c.nstant of ¢ et neo

assume that arc P P, (Fig. 44) continues to orth and to gout! !o

equator, We deslgnate azimuth of geodesic av polnt en tha erustip

fntersecrs o

Ly A the latitude of point Py, «nd wher: the rendesle L
meridian at a right angle, by B..

~

We nave:

asin Ayse Nycos o= "‘1'?_-;
.

buts:
oos By
Al (2.39)
oin Ay = cOsuy (2.49)
Ayom 90 e s,

the constant ¢ 1s equal to ccsine of a given latlitude of that point, where

continuation of spherical arc ¢ irtersects a meridian at a right-angle on an auxiliary

sphere,

(3.26) and {3.34) cannot have single value golution.

Obviously, such intersection is possible only once, otherwise the equalions

Let us deduce the differential equations of a geodesic:

Pyl )
Md 4
[
Fig. 45.

From elementary right-angle triangle 1-2-3 (Fig. 45) '

MdB = dscos A,
vl o dysin A,
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[te]
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%

ar:

4B A, dL sln A
—— el | e M r——
s M ds [4

Prom (4.00) ontaln by ditrerentintion:

drsin A + rcos AdA = 0,

dr = — Msin BdR,

ds cos A

toerelore; by sul ot itation di ; , we obtaing

dA sindsin B
L LT L UL

[
ihus e
.-‘-e-- -.ﬂ-m
M ¢
4L sin A sin A
T_b'—_—_.' _——N we B . (_-‘,_'l.);.)
_!i_A,_dnA‘una_ sinAlgh
ds 4 N

Oirtalned equations of peodesle (5 hon) constitute dirfereniial oquat Tom of a
1 |

rirst order,

Flrgt two of Lhem are guitatle for any line on a surface, Lhe third, obinalned
f'rom fundamental equation of yeodeale, lo only tor peodeslces, Tndleated eguationa
are derivative latltudes, lonsitudes, snd asdmuthe rop digtanes n,  Uonttegaent |y,
inteprating Lhese equations, we can obtaln the diference off Intitudeg, toned buleg,
and azimuths ot two points, located on the surface of a gpheroid,
ussing Crom differentiuls to findte increments and designatlng tham by Al

AL and AA with accuracy up to small valuee of third order, we have:

ABw u:v! +h- um;W'+l.

Al w !.'.';'Lf thw- !.‘."l‘%‘."_" T+,

. (#.400)
Y™ :ﬂnl'nlﬂ+l'_!llnﬁ:gﬂl_+'.

-l
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or b oseconds:

AR wa(l)scosA Uy
AL w=(2)ssinAec B4 1, ), . .
AA = (2)ssinAlg B4 0, st

Formalas (3.80¢) are frequently applied 1o apprevdmare calenlast fong, 19 U1 tn

devepted toal g A0 K, A = A5 and

MH=@= -;)-, vat

w00V 2 L,

—
AL'-%mB%?OO"mB . SERE

. Sml’ 2 "
AA 88 =10"1gB

Thug we obtnln upproxlmite numerieal values of aifferences or Intltudeg, longle

taded and azimachs for ndjaceont, points of 1ot order trimngulation,

§ 10, GLODETIC I'OLAR COGRDINATES
tne of the appllications of the geodeales In spheroldal geodesy consiote in thof
by Lty weans it is posaible to create u system af coordlnates on o surfnce of o nhhnr-
old Ly which a posltion of points is determined by the length of geodesle und an angle,
mensired from a glven initial direction, In the particular csse, it this directlion
colneides with o meridian, then the second coordinate an angle, will be the uzimuth
o' the pgeodesie, Such system of coordinates on o spheroid ls annlogous to polar

gyaten of coordinates on n plane, nnd is called zeodesic polar coordinates,

On the basia of theory of geodesic polar coordinates lies a theorem,

. i if, on a surface from ae n ti oint ndle of geodesics of gquul Jenstt,
: 1o drawn, then the curve, connecting their terminals, ie orthogonni te emch of them,

) ; Let us asgume that from point O two geodesics are drawn to lengt!. s, diustant. one
; from another by an angle dA, We will prove that are P1P2 ig perpendleular nl points
1 Mylg to gerodesics 0P, and OP, (Fig, 46), We will prove this theorem f'rom Lhé oppo=

slte, Let us ussume thot ungles at points Pi and PQ differ from polurs by smell

[ R0
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B RO e AT g s e e

T‘— Vil e t, wWheie oo Ly fhe baw oof contlaal s oone of dein g prenter oed the otaer leass
o ’
E{'- Pt palare et unoasoume thaboat po b by tie angle willl be 90 4 ¢, nnd l‘j 2
! + ' ..
- PR N I oo talte Gy i Yine .1 P\‘hl! o Al cenpeed 10 with f Ly on P re, oo-
2 poci wilh !'1)?. Bortpnte e (Flg, #0)y Loen rrom elementary rlanteangle telaerle
IS , '
“:. :13 ,‘5“‘ Wit have! .
1]
. ’
PP e PP, cora,
L, oartaer;
i

OF - Pty s O] 4 PiPcint e Qo 4P« PP O s e O P P (L e

=08t} oa OF = 2P it :‘

'] | ot

58

Fle, #e, Fig, BT, Flg, IR,

dinee value oin' & 1o ententlally poslilve, Lhen, gongaguent.ly,

; O, » or, 4 I’;P..
I '
thIn ennnol bey elnee by comndtition ()l‘p . -.'l‘i El l‘ll‘i,
: wih,
] R

ln system of polar gecdeslc couvrdlputen of linw o ~ congi are culled ggudeelc

glreumlerences, ¥lement of geodeale clroumforence jo oqual to miA {Itpe WY, Vnlne

m lg called a reduced length of geodeule line, Lineal alement of the purlfuee {n

cpolar voordinates, ny follows frem Plg, 47, han the form ot
e s & L {*. 1)

1n order to clarify the geometric meaning of the reduced length ol geodenlo,
let va cconolder o specif'ic cane, Lel ugs tuke the origlh of cvordinates nl point ot

Lerrest rinl pole, then, marklng ofl’ along the merldiang equal ¢ nnd connenting Lhnte
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Lermlnats, vbtain geadesieo eltrenmfeorence, whicn will colnetde with terrentrlal (ur-
st e peduced lenglh ol geodeste In thils case wili be thiw motlan ot oo parslled,
Wit cont Do values s between Inltial snd finlve polots, m o~ the lewgth of o perpendle-

toto o flolee potor,

alar, dropped from the fnitlal polnt on to a normal, ard passed
My m o the metlon of polar geodetic coordinatent Lhe ape of peodesie oo e

imlh A, Between two polnts on oaosurface, regardless of which of them 1a tuken oo

the tnttbal potnt, m always has one value, l,e., 10 ench geodesle theps ooppenrond
. aospeeitie mo (Fla, 48),
. The pedricwd Tength ol geodeaic 1o connected wirh Gaues curvatore by differsatis]
equation, whone simp i bed derivation {8 shown helow, .
[avh ug take ITwo polnte F1 and Poyoon o ospherold ot gurl a dlatser oyt G
would be possible to dlsregnrd the difference of Goags earvalnre -1-(,_, : }:TL’ITT = FoIn e,
133 ’
Wel wlll draw In the nren of Lhege polnts n apherieal surfnee wlth radlus R oand take
f on 1o apre of Lhe great clrele, equal to g, We will destonnte by o (M, 49), the
conteral snple, carreapondlng Lo are g,
we hnves
. A e
0= Rea,
mwRilne,
. ds= Rds,
U B
@ R'
(] dn = Reosudu,
j My, I 0, cose,
B ' ! & *
d'm de
g
aort
' dw »
| iy |
L5 imk =0, (3.42)

. o Expression (3.42) 48 an ordinary second ovder differentinl equation, whoue inte=
gratlion wlll glve an m, if K Lls known, or it will give K, if m lc given, In deri«

* vation of tormula (3,42) strict analytic proof was not everywhere appllied bul the
equation (3,42), 4f & is considered a geodesic, and K a Gauss curvature at a glven
point, 1o vultable for any asurfaco,
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Integration of equutlon {4.42) wlill be executed, while keeplbg Ln mind that fur
infinltesimnl value ¢f 5 value, m = ¢ 1nd, conzogquently, tor ¢ - O and wo- O (-:-"-') -
. (]

<« 1, We will show m as the daclaurin line ot nscending powers off a, thone

L C s
-~-m:+ Y (».‘q.'\_;

LTI A R VI
m—m(s)-m“+sm°+-;»ma+-;—mo -+ -2—‘-m.',"+ e

wWhere:

mt -(—:}).. (i=1,23..)

eom (3,42)

' o —mk
m - —m' K —mK's
" wmm' K2’ K —mK
mYe—m"K—3m" K ~3n'K —mK"

Whers o - 02

M'.'-f
m;‘l - -K.
mY m.-2K, '
m;’--—m;"l\'.- Ky
KaX.
‘I
KooK dK 8 4 &
' dB & et a8 ds’

(%.40)

[T

—q'——m' -‘—a--_v:-cosﬂl
a8 V' & ¢
Lheretores

K'm — LD A (540

From (3,45) 1t fcllowa, that k' 18 a small value of first order, and that K s
analler by absolute value than K', theretore in further calculations we will tuke K"
= 0, which will lead to an error in finul formula for m by small vulue enrrled tu
seventh place, Substituting the values of derivativas m(;, mg m:)", mév Lo (5,43) und

considering that Mg = 0, we find:

~40n
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»° faltgBcos A _.L )
mei t iy + 120K¢ th (5ol %
: Ny
¥
4
I (%2.87) K, B and A pertain to a peint, which 15 tsken teor fne initial, »
Applying (3.46) Lo gspherical surface, where n = 0, we oirLaln z
[ » :
— e e, ™ L ToATY N
myms— o + RslnR, ( ) :
.
£
. B 3
Cne ol Lhe Lmportant appllcatlionc of the redvand Tensth of weadesie toonperle .. i
ol spheraidal jrodesy corisizts in the proof of a tinorem fint tte apbereldn? triangler =
with sldes, not excoeding 200-P50 km, with an error of third order n omull valuez &
can he solved as spherlcal, N
Lot us assume that two points Fi and P? with their polar coordlnaten (=, A) and :
(s, A + AA) are glven on « apheroid. Joln them by an nre of geodesie clreumferenee ;
mAA (Flg. 50). On u cphere of radl.o K tuke i
&
! B
o ’ ) point 0 , from which with nzlmutrs o el A+
™ 4 ' :
% . + AA from line O M we draw nres of pgreat olr-
. d f
)/ Y L 3 cies, equul to 8. dJoln obtained polnts :'~'1 e ,
} :
2 ” P2 by an urc of geodesic circumfererice (Fie.
' 51).
'ig. 50, Flg. 51. Conseqiiently, the difference of ares !y ', ]
t ot '
and Pl P? will be AA{m - mc).
Belatilve error of' lengths censidering the valie m and My by the formulun (5. 49) :
i
and (3.47) will be: :
Proimm  _ aglelcad
: ] v *
E Or, dropping terms wlth nu,
Sytig Bem A AN EAY
o NN IgREMA .._(....) .
. - T kel 3 sin2Rcos A
Vnlue § attains maximum where B = 45° and A = o°, L.e.:
 J

borm 3




T ecaleulation of lengtis of ¢ldes o Lrtangles In Ist order trlapralation we

retals eligite, declimal pleve,

s
]
5
¥
.
®

vonsequently, 1L 1y neceassnry that:

«
&, L
ors
AN ERY —3
— - 1.10
e () < v
. ' . )
Resolving fnle Tnegqual ity where e C TG R = RO km, we r'ind that:
-~
871308 xu,
rom this §t rollows tlhar part of the gpheroldul surfuce, bounded by geodesic
clrenmterence off 140-1480 km radius, can be subslltuted by spherical ecadlus R, Wit
iz K= menn radlus of curvature of origin cf the coordinates, Within the Limits or
tfe ares the spheroldal telangles, the preater of which will be the tnscerlicod equl.
tarerad trbanple with sldes 230-240 km, ean be resolved as gpherleal wite shown
degree of uccuracy. ‘fhis very lmportant derivation Is used In tLhe resolurion of gmall
spheroldal trlangles,
The gquare ol Hineal element of surtace in polar coordinates huas IThe torg, chow:
Do formula (5.41),
Thlo equattor lg gntisfled by substitution (Fly, 60)
dsw dacosB . .
* JI ‘|
. mdA = dasin® (5,48

let. us vonsider ds and dA arblirary Incrvenses, Lhervefore (hey
R s i
HTL H

Yy can be tuken as constants. Differentiating formuiln (4,48},

we obtain:

. g dmdA = decorddd

Pig. 52.
or:

ﬁfﬁuno.dmm
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——— —— = s A o= ny e

nener g

1 | dm ,
— - —sinb PR
ds =, @ (5.8
. . 0 .
Lot s nosume that in n particular case = ), o iz 1 geodesle, desiprte !
Gy by Len from (AL49) we obtaln:

48 ) dm

KLU

dp mn ds HEENE

Pite Important eyuatllon 1s rrequently used in resolutlon off varions probtlens,

§ 17. RISHT-ANGLE SPHEROIDAL C(ORDINATER

Let us take polnt Q on a spherold wus inltial and puss a geodeslio or“ throge, i,

1

From polnl. P construct a geordeslc perpendleular to line OP” 2t polnt b Deslpnate

section 0P by p, and section pp’ by q (Filg. 3),
A If the direction of the line OPn on the s rfave of o sprercid Lo
given, then sectlions OP' = p and F'P = ¢ fully determine the posltlion
of point P on the surface. In a particular case ror simplifylng prol.-
lems to be resolved line OPn 1s taken for any meridian, called @xjal,

p and q are called right-angle spheroidsl coordlinates. They resemble

o cartesian coordinates in a plane, As on plane, p — abscissa, &nd
Flg. 1%, q = ordinate in a system (p, q).
Introduction of sphercidal ceordinates is based on n theorems Lf

on_n given surface there are any geodetic lines from whose separate points emerge af

right-nngles on the same side an infinite number of geodetlc 1ines of egual length,

Lhen the curve, connecting thelir other ends, intersects each of them at u rightenngle,

The proof of this theorem ls similer to that of a theorem for geodesic ¢ircum-
ference. Shown in the theorem orthogonal trajectory q = const is called geodslic
parallel, Geodetic parallel cannot be a geodesie,

Let us assume that on surfaces two close points (Fig. S54) with coordinates (p, )
and (p + dp, q) are given, '

l.et. us paes & geodetic parallel through points P1 and P2 and designnte Ilo pecs
tion Py, = ndp, where n - function of coordinates p and q. Connect pointa ri and Pé
Ly geodesie s, Inasmuch as points P1 and PE are cloge together, the elementnry arc

o" geodetic parallel ndp can be considered an elementary arc of gecdetle clrcumference
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of radius s, l,e.:

ndp » md 0, (‘ ©1)
Ry
s
Comparing equationz (3,50} wnd {3.71) we ol tain:
1[. 1 dm "
m, 4 ron
nas Pl (,.‘)‘)

dantion (7, 0) ts obtained for orthegonnl geodetic,  ifn our case sieel line 1s

Py runre pien st e
én
- - e (4.5%)
We huvet
dn o
e (1)
*n P
- (L
Let s differentinte evquatlon (3,42), by preliminary substltutlcn of g by q,
trens

Ur, taklng into account expressions (1) and (11), we r'inds

-:;—':+nK-0. (5,00)

Comparing equatlens (3,42) and (5.54), we arrive al a vonclusion Lhal they are
completely symmetric with regpect to Gausg curvature, Only equation {(3.42) 1o snlt.
uble for any geodeslc while (3.h4) is applicable only tor ordlnstes Ln : uystem of
righteangle spheroidal coordinates,

Qeometric meaning of the vulue n is clearest when we study righteanple coorlle-

nates 'p and q for spherical surface,

Substituting s by g in (3.47) where q, i an ordinute in o system of upherlenl

-100-




e S,

coordlneles, we obtaln:

m, = Rsin %.

Mrterentinting this tormula by qc. we obtnin:

ny o= cos S, Lo
In Mg, %5 a system of coordinates (p, g) on s sphere is depicted. [ine r1c i
qopendettie parallel sna 6 is v pele of axind meridian,  Lengtn of peodet o popalted
decreases proportionally n, © cos %9. Conseguen-ly, n . onn
generially be called the coefflcient of convergence of ordi-
nates, All ordinntes, perperdtcular 1o axial meridinn o o
sphere, cross alt one polnt are called thelr pele, it on

spherotd the ordinates do notl crose ot one polnt, ticpafure

they do not have a common pole,

Flg, 5 In accordance with formula (%,4¢) and with substitulion

of s by q, we obtualn after differentintion:

R L LY, [}
pml et T e (200)
'
Here R, 1 and V pertain to point Pi’ and A to uzlmuth of the line pﬂpi (il 63,
We deslgnate:
—— g f, i S A b
w bt e ek
Thent

Coefricients f, g and h are functions of latitude und czimuth at po'nt l’1 or
abgscigsas of point Pi'

For various applications and practical calculations it lg expedient Lo convert
expression for n in such a manner that coefficlients f, g and h become funcliona or
latditude and nzimuth of a geodeslc s at the origin of coordinates, Conpldering thal
they are certain functions of p — abscissa, we will apply Maclaurin line and present

them by serles:

=10l.
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f=Pspl” +04M 4+ P14+ ..,
E=g 4+ +0¢" +... .
Bkt ph' 4 p%"” &+ PR + ... l

(5. 60)

In sertes {(3,08)

-L!l. '-..I_._a'_'_ -_Lﬂ (-
W m ”,“ 4 m ”‘—.(0 1,2,3...)

dabatttatlng (3.08) for (2.57) and retainlng values of fourll order with respec!

0} ot a, we obtain:

ne=l4+Pe+ P+,

+er ety (%,60)

+ Ay c
brom (4.99) where g = 0 1t tollows that:

Ay}, .

-&- - * ("."K‘)

(N)o 0 }

e R L 0 . . .
GeetfPleleats £, 0,0, o, g b oare the eassence of the function of orleln ot
sphercldal coopdinatey,

For Ganns curvature we obtadn from (2.64):

-l S
a de'

Or, taklug into aceount (4,457);

Ko L0000 12000

— — {
iy rowanaiabatd KU LR A ULES b Tttt

t " 1
We aubstitute £, g und h by PU. f, 17 go, g, h0

K w3 —3f'p--0g%— 2" p*~- 82" pg — (1200 = 2/*) ",

Let us conaider n cuse, where K 1g u linear funclion of p and q, L,e,.3

Ko —2p2f'p—0gy. (5,41)
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Junseqaently, in this case it 1ls necessary Lo setl:
Fae0 g a0, !°0m2fet,

Wity these values of ceefficlents the formnls (4,59) will take tie Following

i'orms

nw 44 LPg 4 P 1+
tHth the same dvgrpn'or aecuracy:
] .
il it & et VR e A Y FRES

The values of coefficlents fo, r', gn, deteruined ty neans connected witi daarr
curvature, will be given in the rollowing chapter, devoted to solution ot gpbrreida)
trixggsles,  These deslgnatlons were flrst futroduced bty Gunss in "Gemernl aveetjpne
tions of Curves or Surfaces,"! therefore suhsequently we wlll cail them Gnuss coef-
flelents,

§ 18, DIPFERENCE:S OF AXIMUTHS AND LENGTHS OF ARCS OF GEODEDICN
AND NORMAL 3KCTION

For formation of geodesle trinngles on n gnrface of o gpherold 1L i necesuney
Lo chanpe over from normal sectionsg to geodesica, With this goal It ig necegsnry 1o
Introduce corrections into the mensured dilrections, Deductions of tne tormiln for

Indicnted corrections will be made with the utilization of an nnderstandling about

geodelle curvature of u normul sectlon,

Narmnl section 18 a plane section, at each of its points & binormal ia perpens
dicular to the normnl plane, The same perpendicular will constitute to inverse
normul section with an inverse normal plane an angle, equal to 00° - f, where I' 18 an

angle botween mutual normal planes, equal, in accordance with (3,4) vo!

\ )
| uad:‘: sin A $h

K, I, (louas. Selected Geodesic Compositions, Vol, II, Geodeslzdat, 39uf,
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Geodetic degree of curvature on & surface, as tollows f'rom (1.48), 18 equnl to!

] )
% - x cosd,

W pe %- ta the usual depree ot carvature and 3 {a onnoanple between normal to sartace

and binareal of oo curve,

v In cur cnse:
bo
.l-my—-h (*w'ﬂ
concequentlys
'—‘-—l-olul' -
| D (hrm
i er s onosmad bl ovalue of the aecondd order; Cherefore Tn o retepence to noreed
- . 1 ’ 1.1
cretion we s take & oae vl fo D
Mot
T _
Ry N N { Rt
In 4 gereral eaae the geadesle {e dlapesed ag Yo shown In Fle, S0 with respest
to mutual noranl tectiong,
Leeto ur vonptraet on o oot plane of paeints r1 ol Hnes, pusnlipg chronpeos 1l
' potat (Fige o), In o thle profecrion the peodeslo will be deptetod ne gtrealeht Hine
. and nermnl gestiona oo Lona carver (e,
N AR
, ) Let us LuRe l",l woorlgin ot grld oot -

nntea; divect nxld % nlong o, 1,e,, In thin
vhare X e, and axty y Ly perpeitioalar 1o o,

Lren b whll be an mgle betweeh geodesle and

L) noranl section,
f] Geodetic curvature nt any polnn ot o
IR, b Vg, Y, normnl aection is equnl tuol

J__ - __L_agmumd (4000
A (e [ n ‘

'10“-

v uﬂu-jﬁ‘nm-

-




Tu adepted aystem ot conrdinntes:

-

¥ =gt . (+.: 7}
Lt ool o valuae of tntrd order, theprefore we can with pgreqt accursey o deno.- ;
[N A
: tnntor (4,00) Lake y © w0, ;
-

Ty

s e

1) o A .
—' -...-!—N.‘—N-A"l'.!m. ("._'."“

4

ceneideptnge T et Ty

T, we obtadned secand order ditCerentinl cauntion,

Fzkrma

(*,w“) the Yutltnde and w2 inmth st the arigin ot cocsdinntes as constunts, we ipnlts )
#
e Them, g
) We havoes s
odain A ¢
Mntsin A s A .
“V-—Ljﬁ#-+%
#utin A cos "
_y--—w._._—.'.c...r"' 2
A
i
1
Led ue determine the value of constants ey and ¢ At point. V1 we have g~ 1Y,y o7 0, §
' :
ad vy - L b, Conoequently: i
l.
c..—“‘n —V :’:
‘. -0 3 4
; ;
: AL polnt 'y we hnve y » ¢, x » & und thent i
)] [ .
: i
! #ytein Aros 4 ]
o o '
; . o |
i
, urs
”» " '!’h‘“‘ o PetainlA
Ve =G =" =
(3.69)
" .
! Whees § ) A ’ '
; e
, 90 K :r o 0*.10
, g | iw
' g 0 .ol

Thus, the magnitude of correction in direction of tranaition from normul nectlions

1]
L0 geodeales in usual by dimensiona triasngles of triangulntion is lean than 0,001,
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S

B

Fror slugle trangmlasions thilg correction cun he tpnored,  Bat in consecntive ealen)a-
Hon of - lmutha of the otdes in tro aggulatlon along the ks, Jlareserd ot Toie
correction can load ta

"
o Hink oon o omder of o,

L

systemalie orrar In azimuth of the atde of lagh trlangle or

AngYen and s tmit b of peodesten afbope ad bt bnent o 15t order Prbanpalat jon
1

tee e lenlated oo ool Pheretrore correetion bostould be conglidered Tnomethemat e
teeatment o regulls of angle meamorements inostate st order telanealation, Ty

relangilation thtg correptton I dlaregirded,

beto ng Flnd the dit'terence An lengths of arep of geodeslen and nortnl geetlon,

W Wl exprems the element ot anoare of normal oseet lon An polar pecdet e voopl’ o e

d.‘-ds'-}-me‘, (.\I.,‘“\
Hevo dt 1y an olement of are of normal sectlon, db = an element of the np of
reodeate, il A e mgle between thiete apeg, Vo, e A - by,
Prom expressfon (4,70)
de a'[ . '(.’“‘. '
sl 4 m “)
arg
Lol LAY
do-ds[l + (“) +]
Wit from {A,09)
(4" = (44)" @ Laamas
[ 7] [T
tfonavquently,
‘l-ﬂ{l * ""'i"'“'“l
w) [4,74)

Bue, In accordance with formula (3.h4)

ﬂ.l—-&--}-...
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Wit anoerror of aomapnttade Ll ocr than et order b exprosasfon (4,°71) 1t

fo pennible to take oo ny THent

domanl 4 ZEITN)

Inteeral o thin dirrerent b egquatlon will e

ompm Saltitad, (e
Mon}

Worpe gt A ki leos o and A - BRY we v
w3 0,078 au.

Thaurg ar any ddatancer on s tepreatrial upb erald, pongdy e by practier o peooedes
alework e (0 e posedble net to vonalder the dietorenre of lenet by ofF apen o peobea] oo

and nopmal aeetion,

LoAv, CORRBCTTION FORA TR LG 0k A O ESVES PGLNT
Lot up wnpume thnt polnta noand boaee proJectlons of polnts A ond bt sgree
fave ot the npherotd (Mg, H8), Ny and n oare polnts of nterpection of Bopmain
pointa A ard TEwlth axte of rotntion and 1 Che helpht of poingt
[y Dreetfon meagured from A to B Hes Ao plane “""'1‘ wh-lloe
we hnva Lo ahtaln an angle butwaen diveections al anid b, Cole

sequently, the meagured dipsction Ai must be corpected Ly value

Yo

t
In trlangle nbb wungles at vertexen L oand h' tan b Laley
- ] .
Flg, i, ag equal Lo 3609 w A;‘ (AQ 18 n back nalmith), and lepgthn ab

]
amd ub o oare sunl Lo o4, then we obtaint

_“'.‘04’
T e —r

In view of Lthe amallnesa of bb' we oiln conaider that thim La an are of alrcume

'avence of vadius N} conssquently)

W will,

B 8 con A
Mt ¢ rrom expression {3.2) with replacement AR ~ --wr-—l Lo egas) tot
1
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| ol (R4
‘ % AT
| i %f ST

‘ 1}
. -
ors

4

13 . SN s Ay cin 8,

J | ,— e -

. M,
A Sloce o beoaoamnl ]l mepndtade or the gecond order, 10 Ly possible 1o ke
: n Ay —sin A,
retelaret
1".'0' '"I’I\’A!’
w, !
or, taktug "'r- - (‘l)1.
L IURY g sin24,
) 4 o
(A=A =2 w0t L an, (4.
FEoshoudd be emphagtaed that 5 o e madn mesber deen uat depend oy a3,

- : Ween b a0 (1) e oy

: ‘we luive

) ' i

Por B w0 g we kave " 0 o,
’ "
i : - 00 mowe have M o004,
» L}
! : Weo pogquire that o 001, Lt ug aemvme et o A1 buve thege name yaloepy,

thivni

Hm M—‘!.-!’-!- 260,03 xu 2 30,

Thus. ecorrsetlion y ahould be consldercd where I X 30 m, Feglden {6 ahould L
congldered that B Lo the helght of alghting target nhove the reference ellipsold,

Numerlcal examples of caleulations of corvactlons for helght af’ obneryed point
and transition from nztmiths of normnl gectiong to nzlmithg of geodenlen nre plyen

tn "Practicum on Higher Orodesy” on p, 20070,
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CHAPTER IV .
RESOLUTION OF SPHERICAL AND SPHE ROVEAT, Pl ARG EES £
§ PO RESODUPION OF SMALL SUHBRICAL PRIANSLES ;,
RY LEGENLRE THRCKEM !
n plaming n acheme tor fat order triangulation L6 g reeresnnry (o e 1 with ?
trimgtles of comparatively amall dimenasionn,  History of “riponoeetrie wark [letn 2
only severnl telangles, having stden more than 300-440 am In length,  Proe borgrest o b 3
. of o peodetle quadeangle, meanured by French geodealgts for connection between orlan-
pulations of Spadn and Algerin in 1879, was nearly 270 km long, Treianglen of nomely
. thie quadrangle serve ap nn example of resolution of large trianglen on Karthts g
sarlnee, i
Ppesontly radnprgeodetic menns make it possible to measure digtances on the opdep
ot oceh00 kiny however for layout of high-precliaion pgeoadetle neta with thdlonted glaen
: Lhese meany have not been used as yet, Nevertheless, consldering the pragpects of :
§ inareane in the nccuracy of radargsodetic measurements, this chapter will connider
' methods and obtained exact formulas, both for regsolution of smnll dimension trinnglen
{(r=430 km), 1014 out nccording to contemparary scheme f triangulation, and for Lplane P

fivg of large dimensions, up to UOD=500 Kkm,

Prorweding from theorem in $ 17, spheroldal triangles with aiden of 2%0=7h0 km,
with errora of third order valuegc can be subatituted by spherical trisngler with aln-
tlar olden, 1ald out on a sphare of radiua, aqual o mean radlus of curviuure of Lhe
center of pravity of spherical trimngle, Consequertly, nll triangles of cuontenporary

1nt order triangulation can be resolved az epherical, l.e,, withont conaldering thely

spiivpatdness,
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The outgolny sides of triangulation are meuwsured directly or are obtained thronyes
B
%‘ basic nets In meters. ‘Therefore aldes of triangulation shonld a2iso be obtalned In
® thege units, In selection of metnods of reaclution of triangliea this condition is
! 3 Infttil. ‘There are severanl such methods. Theorem of Legendre, 13 the most frequent-
? Ly uged, 11 1s 5o formulated that a small spherical triangle carn le solved us o plane
! .
' ane, 110 svery snpgle is decressed by one thied orf its gpherien] excesag,
Let us tnke a glven gprericsl triancle ATC and o corvesparndlne plane Lrlooggle
Aihi(l (Fig. 24,
: : : P Py We have:
“ ¢
e \ & 4 .m(i:.‘!l_).alu_‘- COQ_&_QM-‘-QH'\ AL.
: 2 2 2 2 ]
4 (2
fa) 4 ;” & but:
W, ry_j‘ llnA- / In(s = singp —¢) e“ -Iuplln(;;!i;
’ 3 ' sindsine { s sindsine
4 . ‘/ L EN mi,!..l/ 208,
w)“u]-,-: -“I—-L.l;‘_..i_(“:. <t p'
A
Cotmenquent iy
A-h o /lln_(p-—-b)hlﬂ(p-—c)_g(p—-ﬂ___
? ‘ indaine
- l/ sin pain {p -+ 8)(p <~ B)p ~ t)
dcainhsine
supplementlneg subradical expreasslons Lo full nrea of n plane trlongle Ai ‘1 '1.
Lieow A w p(p « BJ{p = a)(p = c)and carrying 1t ng a common factor, we obtnin
sin A - Ay - {V nnjp—bbllnl(pn_)
: t llnb llnc --Hp—-q)
. be
: [
i oo _l/.!.“!.l'.ﬂ!.ll.:‘.ﬂl{

0 ~¢)

under roots n f'ollowing expression is obtalned:

Retninlng smnull values to fourth order inclusively and tuklng udditlonal denlpe
nationst

Piabte—a Ppymati=h Ipea+tbde,




Ve O
Foontaln Aty _ & ‘(r -ﬂ'H‘P.'-!; oip}-o'e) J
3 X1

0 = -t —d | ot ) o
- ™ I('*‘ 12 }

i aitade e ae DUV SEFRIE R

1) pr—p] : pl=plm(p—~p) D+ P+ (p =P )P, + Py} m
-blate)+ b(c—a) = e,
2) Pip— PP = Py, — PP, )(ﬂ.na—m’ )=
-t B b+ O — (b= = St — 8 =0,
3) (p'—p) + (0} — 3) = (PP~ P (P + P} + (P} —P}) (P] -+ PY) =
-bc (30t 4 ¥+ ).

i DR IR0 L4 S

]

Consequently, e
:
sin ‘:AL' (H :ﬂ" w“a::."}(' a'l.!’.)' i
L e E j
- (1 I, ;
(n,1) ;
. From (4,1) 1t follows that sin (A - A:l) is the gmall value of the second order, :
L.e,, lhe difference in angle: of spherical and plsne triungles for correspondinge
i aides 15 o small value of the second order, therefore with accuracy up to amali valuen :
4:. of' aixth ordenr: :

Expressing (A = Ai) in seconds, sides of triangle in parts of radius of » ;

e et e

aphere R und considering that for (B - By) and (C - C,) we have to obtain symmetric i

(4.1) expressions by meane of correepondins transposition of lelters a, b, ¢, we I'lnd:

a

(A-A \u.%,n(l + ..'.'..'h!ﬂi_’ﬂ).'. I

1R
OB = ghe v (1 4 JEEELIE 4y (4.2)
C—C ol (14 JEERS ) gy,
ors
A B Conlhy 4 B4 O e m gt (1 4 SECEE ) 4y, (4.3)

Irom (4,3

1)l




a ” u( "+.'+¢.)
Ry [P 1.1 Py
e R 4 RS * {hoh)
W ~
. substitating (4.4 ror (4.2) and adopting deslenntion:
2
? LI

(%,
we t'inally obtrln

Am A= S ot —a + 1,

B‘-B_._'_-.___.._—(m'_&').'.l. (l{.:«.}
: CymC--2 — L
P ‘

- T (B - s

(n,0 1)
[r in (&.7) the terms of fourth order are dropped, t' 5 the obtained expression:
will take the rollowing form:
L
AwA-
B 3
Biwb—-t L
'y g e
.“
C.-nC 3

this will be proot’ of the shove mentioned T e dre theorem, Dropped terms are cullwl
correction gpherloal termg ot Legetdre theor:

Sphierleontl exceds will be egqual fod

: v ""913?" (4, %)
¥ .
B Sinec A s nnonren of a plane trlanele, Lhen
Vo L0y pt e pins U, --- sinA
; ¢ W L= “. - [0 (4.1)
i From (4,5) and (4.6) Lt follows that in equilateral triangles spherical terms
' become zero, but Jn ldodceles triangles they become maxlmum,

Let up agoume b » ¢, and inveatigate the obtained expression of uphny-un.f cor
rection,

From i{sosceles plune triangle:

“ — e
Dbwem

{(h.,10)
L X3 -——p“ﬂnc - "-—Igc..
Theretore:
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A mt— ) = =T (g%, — 21g C). :
b= e (m*—aY =y TR (M g¢C) (}
Horeet 7
.!."_...;"L!'.L.(.‘_."EL..._.'... -0 g
o, RG] g
or !;
: .'EL..._.L.)_J.!'E.L‘:_'....() &
oG, cos’, coa'C) ) ‘i
~ " 5
bt eon’ (:1 » 1, consequently, tg' Cﬁ - 1 . wWhenoes :
RC,ml, 8 CimB w5 A w00 e -
“ 2”0
P = Tt :
®
" .
Let ug assume Lhat, ap required in 14at order triasnculation Fang e b, Liand -
(.9..)‘...__!"_._.<.3‘“_ *
R wgae :
el

L] 4.3 43R 4,3, 4000 '
—— amann * ndvnan S it s .
RS 0T e e _
From (#,10) it follows ti -l where Cy = ys°, ;
- bumcom B nu. !

Thua, the reduced calculatlion ahown that 1 the lnrgeat slde off a 2pherieal 1901a
nhignle dovs not exceed 200«250 km, then such triangle cun be resolved by the Jepenhie i
theorem without correction tevms, Angles A,, By nnd Cp npe enlled pedueeml plone i
t

apemlea,
Lt the sides of a triangle axcend the shown limita, apherlean] carrectiong of

Legendre theorem ghould be used, but Lhen such triangles, mennured on Faprth's gurl'ace,
ean net be considered sphericnly they should be polved as spheroidal (§ 05),

Spherlenl excesses of trianpgles are caleulated In the triangles of ot order

e 3 2 WP

"
triangulntion with accuracy of up to 0,001, therefore the error in determination of
Fomant not exceed dub unltn of fourth decimal place., Proceedlng from this requl ree
ment.,, we establlish, at what values of ¢t it ia necassary to caloulate them by the
. rormula (4,61),
Second .erm of right alde (4,6') has the form:
’ M-n"-—"'-;-;l-. (h.14)
Let up nesume thatt
"-iggu:vuuuu
ellBe




(R |

Aot

i -

[
-

(m w'll hove maxtnum value $n equllateral triangled), o = b = 0w opo= e kw, then
trom fnecanltoy (A,110) 1e fallowns

TS,

Thua, 47 ¢" » 48", then for calealation of & formuls (4.0 '), and where ¢ » 1R"
dae farpetly (--. D,
In catenlatton of 7" ona oo pale, exact valuen of pedaeed apples are snktow,

therefore VL Lo pecepanre, Le satat bate tnem by spherlend, o sobtgt Lian fan oo,

Jorrvt v iy eppeays

de”’ maelg A dA,
Where ! ‘
dA = -;-.
Hlerefore

de"' = .nl ﬂl_AJ
’ 'll

.

Snder gondir Lo, dl” s ool ana Ay - Hot!

." < "M.

e ortver wardi, precedin deriviet ton aheat the neevmey o enlealat bon ot o wae

conflered, where ¢ 1E" LU phoutd be oeatentated avcording to (8,9 with sl Ta-
Plan of pediesal plane angleg ’\;1' ll1 il (31 by ocorrespunding sphertont agles, 8
nowever © oy ARY, then ¢ tg obtialned: by takine Lhe mam of the mesgured anglesd o g
Cedar te tean 15'\"‘“. gubtenet u thied paort of this QUi rerenes from nople Aoor I oe
and by LU oenlrulnte ¢ by the rormula (B,04),

Laetoug nete Lhet prlor o entenlation of ¢ by Fhe tormiian (A,otY o (B 0) s
votin wlih an error of 10V05 ta known Crox preltminapry calealstions for dotomminatio,
o diacrepiney ot o telapele,

For telangles of ot order triangulation ¢ can have n maximun valoe of 2" wiih
0k nldes ) with 00 kmostdes, 5" ond with 4 9170w aliey, poapp!,

i1 triungler In trlangulatlion are furmed by elllpsold chords, thetu, au wus shown
by M, 8, Molodenskly, thelr resolutlon can be satisfled by the farmitlas, mialogoan Lo
trormulas of lLegendre theorem,

Deslpnating chorda by 7, T and © nnd assumlng that o and apherieal aneles A, P

and € for U and €, nre known we obtalni
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S RO el SMALL SPRFRICAL CTREARGLED BY P ADOY Y {

v srbertent tebame te ARG (B, o), whone o ldes ape

e, we Bave Ly leeore af slnes

& ot B .
sin 2 min “ ¥
[ ] R R snd ' {h, :
) :

§ Hore o o= kiown stde, oo bo be et ermtinmd,
'] - b © i v - Wt . 3
¢ For dat ordor triaygalation ™o~ 1 thoerefore Prom sl s o aeati :
alrted et wg tarn Lo angedes by n kbowr Coemedag !

iy, ‘a
9 a
goinzmlgy = 25 Lm0 - :

. g [ ] (LT * k"l R AR .
1

(i = modudun of natural fupetionn),

Feom (0,40) and {(8,1%) we have:

C b ——

l‘lln—-lg-_. ._;'2'7"'. - ‘:::: -
oo e 2 — (o
Whepe now b o« SO0 Re Lerm‘u-lﬂﬁri < n.h'n“'H. Theretore for unual aldes 1h vpte
AHOR

mpmlatton thin term in (4.30) onn he digrepsreded, Tt na depirnatet

1000 :
A=t (410 ,
u Lo o, enereal aymbol for deslepnation of the side In teinnpgulation, :
Gongequently, from (4,12), (h.4h) and (h,15) we bnve :
unn .
ghelge pig 22— 4, + Ay (1) i
A, A, nre called ndditamento, whence the name "Additament Metion",

In comparison with the Legendre thoorsm in additament method the lognrithme nf
alden o o trbanple nree chmged, and the solution of a trisngle ls wade by the follows

Ing netionst
1, Vrom the loparithm of the initinsl side tnke awny its ndditament and obtain

n reduced logarluhm of the side,
e Hepolve the triangle with initinl reduced alde ng n plane and obinln reduced

L]
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% Togarirhms of ortbor oldesr o tie trelamele,

‘. LR L RIS U PR AL SRR ARPRIPPEE TS IS PRRNRTIS B B ILAVL RIS IS I 3 T AU IR UG BT N S B R A PR A

oty peotette talled, codaltaneldb s code be oesdealated dn Loe tol fowige mannter:

I b
: R R e o A T A LI T LR IOPRE o B DY RS Y VIS TR \‘~) 1———1. vore poent e
K
A =l m)s
H
Cre
g t P L AR
Wehaslga t 0y it 1 2 {S)n . (1) 0, (h.
. e [h, 1Y Er o rc plows Tt Pope o eqdealat e of addti taments 1o be pecennar, bo
- Bl utiani ocurvalare -1--,: fap evepry tydangle, Howsyep -1-- chanpens o0 81OwWlyY will o
e i
cUog e o Lt e e, Khewinge -L-‘ for oobe et tey T T posalblbe taoendenglane 1y
"
St s s Po oo e Pk et crtoanbnt e, Prodeaet o peandot e tatdes {py, o)
R T A I S B TR B SETTTN | BERARIt Gt e tent gt SR ke ehage '!‘R voutt ot thowee
K
gl ol ve etk tectmad place, Therefore in (-'(.1‘.‘. -1-1 Ban be aeeaphed o romitan:
K
o et tesas et st boavate, Py ot 1 2 10 o ponnible tov eappene o
Pt e o aeleet o ot s b et s, T iebe 5 apeee elven values of sotdU ument s fop
moan D P ot et s e e spproximately colnelder with the mesn byl be
e e teppbtory o e IR,
¢ -l_-lv- % .
- RiALIMenLA & L ar1UR oF A plaan tooertiter 11
w5 o o AR bl AR
Wl ] o] o)) oo oe] o] o Lon]tr N
’ ' !
4. L] " 19 | 3 el ” &) " W] Wi 1] 4090
f sl 2 ol ol nl 8 7! w| af @l 3l
2 4] @] @« 81| M1 k| W| 2] ] ] J/42030 0
’. n Wl ool &1 mi o3| el a7 814N )
A N2 WP 3 190 3] ] 48 138 ) 183l B 4.43.4 1
: 48 170 ol 1000 RN 200 W B S| T M} a.qg. 2
. 1.”!‘3 01 3| M NS 372 | i IMm] 4038 3
) 1 ! . gu S| N M| M| o] sk|em]R|ehTn 4
IR 013 | 81| oo | wae| oo | wias ot [0 | Gola 7

e .‘\"{:_; '

§ ooy RESOLUTION OF REGHT=ANGLE S3EHEROTBAL FRIANGLE.:
(RELATEON BETRLEN DCLAK GEODETIC
AND SPHERCT DAL OO RATEDY)
The poaltion o polnt on o surfaee ot a oppberotd cnrt be deternined o ltner by

polar geodet Lo coardinaten (o, 1, or spheroldel (s 9). Voncequently, sny polul of

a spherold, determined by glven values ol polar coordinates, wlil corregpond

determine! valuer off spheratdal coardlnstes, Voey,

.
B T T R




8w ‘pa q)l
&~ 'U‘o 0)-

& L
S o——dp fod
ds = ” [ o M
d.-.‘.’ldp.*..'.’_a.dq (‘i.la:’

ép o

lel ug detercine the geemetrle value of partiasl derdvatives, entered 1 (5,174,

Pt e nseume Wt pednt 0 (Pl 1) 1 pdven e polay coordinuten (0, ) ured
srherol il (P, q)y The arlpln of coordinates for nystens (o, 0 el (o
At polnt G, Lhe axle of absolagas o system (b, o8 colned b b

the perldlan snd coardinatea posred o Inepesee booaagprt g oo

TLet ve conglder ihe other polnt, determined Yy the coordtonatees
(Pl dp, qg+dg) wi (5! ds, 2 | da)

1]
Let un deatpnnts un nngle where vertox P o telngrle o0 0 by

i In elementary guadreangle CPLDIY, the angle where vertey 8 (g |
Y [ 1 )

Lo (15’»00 - 1), anglens where vertexes D oand U ape polar and anglo o

'.l"-r vl

Pj ls equal to 3,
et un take projectlion of hroken llne I DPC at € and prefectlion Or b ot G,
Wer Jrgye

ds m dgcosf 4 ndpsin } (h,14)

mda = dyeinp - ndp cus}

Miltiplying the second equutlon from the systems (4,17) by an m and eguutling

right. nnd left parts (4.17) and (4,18), we obtain:

] [ 1] n
R .";‘-n"np, 3.-‘—;---——;603'. (L‘ 19)
2 -:-:—-cmp. 4 -‘-:-:—-—:-‘-slnl.

1t origin of coordinates ir taken at point P (Flz. 62) und allowing that point ©
: ohitted to 01, then angles B and @ and spheroidal coordinates p and g will exchange
g rolos, 'lherefore analogously with expressions (4,19) we obtain:
(]
wnee um 01 8
* .“’ . {4.20)
e an ASIN S

[

From (4,20) by means of ldentity transformation:

«117

t

T R

Se vt s

B (% |

[T




o
Consequently;
LI o 2s3in ), 3. —'iuzscosz
Wi nd (4,21)
[ 2 1 M . LT
2. -;'—- ‘CN’. 4. ‘:——&—-2"“\! -
or:
I : £ &
1ig. =2, ( ) (—;) (4.22)
» .
LT ). sconzm L2
N 2 9
e B 2 sstn':--‘--i‘l,
~ 2n dg .
» -l-.a.':. ’ i, o3
; 3 ssinfe = (4.23)
4 scosim L0
)
{ Diffeientlal equations (4.22) and (4.23) together provide solution of righteangle
t .
spheroldal triangle OP P (Fig., 61)., They were first obtained by unalytical method
by Gnass in his "General Investligations of Curves of Surfaces". General Integration
) of' thegse equations Is a very aiff'iculr rroblem, btut for geodetic purpsoses this inte- )
; gratlon can be mnde by mezns of factovizatilon into series by a method of lndef'inite
: g ¢oefflcients, For integratlon vz note important propertiec of u function:
.
C g sm=3(p, 9). a
R g 2 o n " f
. ga 1, VWhere p = O we will have $° = ¢° and where q = 0 is correspondingly a° = p“, %
: ; [ [a} ’ .
! ¥ consequently, in a series, presenting 52 by p and ¢, with the exception of pa and g%, ‘
oo
ﬁ; ‘there cun be no terms, depending either only on p or conly on q.

[2) a
2, Since series for 52 start with p“ + q“, they cannot contain terms in the

rform of kpqi or inq (1=, 3 3 ...), -
. From these two gppngrﬁges of he runctih. a\p, q),it follows that series tor s?

should be symmetric with respect to p and q and can contain the following compinntions

of various degrees oi p and q:

vy, | ,

3y .
N T (4.ek)
4 N.N.P’Q‘ flvy

Considering expresslon (4,2i) wm? Antroducing indeflnite coefficient
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Y (L =1, 2, 3, ,,,), we have:

Fom Py @ a2+ ag'et + aup’ Fapit+ aiptyt + apet L (e
Series (4.25) constitute solution of differential equation (4.22) in lmpliclt ferm, .
In order to cbtailn it in expllclt form, 1t 1s necessary to determine tre value of :"jZMJ
lndefinite coefficients, :
T'rom (4,25): 3 "
b s
.%'7' = 2p + 20,0¢" + 3a,p%" 4 2a,p¢" + 4a,p*q* + 2aypq '+ 3aep"y, (- 3,
;‘?‘-’.1 =20 + 2a,0°¢ + 240 + 30,0°¢ + 2040'q + 42:0'0° + 3240, () :
From (3.062) g :
== 2ppg — 2t + 3 g, (it) :
"
Raise expression (I) and (II) to a square, multiply the square of (1) by (I11) ﬁ
and add them, we then have: f
o (L (EE w4 gt 4 0 200+ .
+P¢(5ay— 2", + P (5a, — 2¢*) -+ pg*(Gaq -t ) + (4.26)
< 9 60, + 6} —da i + - ) + Ba oy,
Comparing (4.25) with (4.26), for determination of indefinite coefficients Ay :
Ras B3y 8y, 35 and ags We obtain the following system of equalities: ;
1. g, = da,— 2 or a.--:—p .
2, a, = 5a,— 2’ a.-—;—r
3. gy = o, ~ 2g* o=t
4. 8, m6a, +a! c,-'---‘-‘s- ot . l ‘
8. a, = 6a, + 0! —4a * + —:-"' ......_:_5..,-' i‘
6. a4 = 6a, g =0
With these values of coefficlents a, serles (4,25) will take the form: ! ;
Pt gtk L gt 4 Lot b L ot e~
R ' (3. 2)

1.e., basic relationship between right-angle spheroidal coordinates (p, gq) and polar
geodetic coordinates (s, a) is obtained,

We have:

R R L L Y




L3N

e

i
i
&
b
£

3
l;

2 A % PP e W g, (V1)
Further from (5,42)
A ..‘___‘, ___L'l 4 5 . (Vl.[\
™ "y Ty e = et I

Substituting expresslons (V), (VI) and (VII) in (4.2%) and retalning terms to

seventh order with respect to p and q, will obtain:

llln’-p-—;—]ﬁpq'-—-.:_",ﬁ,,’__ .%_E-ml.__..‘!s_ I"_’P'Q' +

+ o M+
- 2w LI 3 e e, * (14.28)
scosBuqt = Polet - I+ - 00— 1" _

. FORY
‘sl'pq-il,

f-‘y"':'qm;-l'ﬂ' — 2l — Pt -,%I’"p‘u—
- 'B!S'l“”p'v“ +4
e D gopt o 3t JLEPTYE LB T
seosa  pot oo fopt o+ P + 5 8004 — - e

""{;""”N"f‘ h

Thus are obtained series (h,27), (4.28) and (4,29} in conjunction they plve
solution of rirhteangle spheroidal triangle OP'P and simultineously present resolus
tlon of dirferentlal equations (4.22) and (4,23), If p and g are pivea Lhen serles
(4.07), (4.28), (4.29) deterulne 8, B and @, Ty means of conversion of these series
a formuls can be obtained for enleulation of ;7 and g, It s and @, or 8 and B are
flven, But before inversion of series, let us find the volue of coetficlents ro r'
and nn.

From (3.01)

Kol —2fp—6g%. (4.30)
where K 1s Gauss zurvature,

Let us conslder this eguation for vertexes of right-angle triangle OP'P (see
Fig. 61).
For points:

Pushive poe?d e=0 Kom =20
Pypmp gm0 Kgm—2p-30p . '
Promp qmqg K, m=2p-2'p—bgy (4.21)

! .
Thus, 11 Gauss curvature of vertexes of pighteangle triancle OF P (¥ipe, 63),

from (4.31) is given coefficients 0, t', &° are determined rnd converaely, Lt
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LA , coefflcients are given, then curvature is determined.
From (4.31) it follows that:
4
Ko+2k‘u+'\’,—~—(8!‘+6"p+6y’q). (%.32)
] L3
Flg, o3 With the help of expression (4.32) serles (4,27), (4,28) and (%.29) :

can be given form:

peprp o et B iy iy

b BRGNS T R e ,m% y

2 ssindwmp 4 Kﬁ%“i’.ﬂi ¢~ “ (IGp’q'—-qu')
2K, + 3K, + 3K, A} N
3. scosp = Q-*‘L'—..,T'L —2 pty --:,':' e + 2%¢*) . (i .%%) :
- . -!‘ K A." é
4, ssinawmgs M‘L.._!..L p'q'--'-(lﬁp'q’-7p‘q) b

]

2K, - 3K K
5 scosT e po— .—"-‘-_T‘ﬂ_i.’._' rt— M‘ <+ 207,

MEEEE S TN
|
t

All these expressions are mutually controlled, since:
(ssiniF |- (scos 3 a= 8 op {Snin2) - (Nens o)t u gt

From (4,33) by means of conversion of serles following expressinns for spheroi-

dal coordinrates p and.q are cbtained:
[ ¢ 2K
) p-sslnp-—s’alnﬁcos’{:—-ﬂ—’-"-‘*—-—" + m (M —8p%" i

Ky, o+ IX 3
2, ge=gcosd 4 -shinthcosh gii——’”—t—-f -+ -—'-(2p‘q — %)

3_,_“93,4_30“"'“0““04'“'___3_‘_ —U (2pg* — p3%N (4.34)

4. Q-:sina-—s‘stn.—.cos'u-—"-*-:-:—‘?°+“' + =2 x° (P'q-sp'q-)

Formulas (4.34) have great application, esince from the geodetic .neasurements

RIS PO

polar coordinates, distance and azimuth are obtained, and in resoclution of geodetlc

problems right-angle spheroidal cocrdinates are utilized,
For complete solution of right-angle rpheroidal triangle OP'P it is 8till necen-

Bary to obtain a formula for lts spherocidsl excess, ) N
; I

We have:

s w (3 2 4 90) = 180° we —[00° — (3 4 3)},
. sinemginasinS~cosacos }

or:

aine s gsinngainy~scosescos b,

With the ald of formules (4,31), omitting details of conversions we obtain:
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Ko+ Ko+ &K 15
Poinem 220D 000 4 gt) b g Kipglo'— .

Converting from slue of acute angle to aro angle in radians, and substit :ing

®
@ 32 by spheroidal coordinates, with accuracy up to small values of sixth order we
' % obtnin: »
? Ko + Koo -+ K L
: '-"L“LL!N+J-M@’+Q')+I|.
‘: ¢ u {5.35)

by tormiala (4,35} £ 1s obtolned in a radian measurve,

- § 23, RESCGLUTION OF GENKRAL 3PHEROIDAL TRIANGLE
' h Led ag call an arbitrary sheped triangle general. Then let us consider resolu-
: tion of a genersl spheroidal triangle, obtalned from righi-angle triangle by following
the construction.

1
On geodesic P P (Fig., 6Hl4)

Fs 6 e take arbltrary point C with ordl-
a 8, 1
e ‘ nate ¢ und Join it with the
% ! ¢ oririn of ccordinate O by geode-
1
slc 8 = 0C, Trilangle OCP,
{n) a4 )
formed by geodesics G, 0P and
W' {34 0
g, o4, Fig. 65. CF, 1s a genernl spheroldal tri-
angle, TFor convenlence of atudy
§ let us Introduce new designations. Assume that the vertexes of the triangle nre des-
1
d ignated by A, C and B, and the opposite sides by a, ¢ and b (I 654).
§ Ciements of the new triangle ACR in former deslgnations will be:
¥ Amamv, 8w, Cm180°—3,
¥ sme—y bmg, Cms.
A ; Substituting in formulas (4,33) the values, perialning to vertex I’, which pertnj-
T to vertex C, we obtain:
' g;‘ Kot 2oy X LH
. : 2 + + 12 ’
' Pmphp ¢ R Pt )
t\i\.} * "
: , KW H W, K 4 et 4
? o coss’ s beoss’ mp N P g i - 20%7) (4.36)
. 'Kyt Kog + 2K, L . .
% Sind mbsine mg' + _ﬂ'__.!‘!..".'_.t.ﬁ——i"-(lﬁp'q’-h’v)
%4 Spheroidal excess of triungle ABC ig equal to:
¥ ’
!" [} -.—-’ P
: t ’ {4.37)
-, L]
‘ where &€ = spheroidal excese of triangle OF. P,
o
j -122.
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' !
£ = spheroldal excess of friangle OF C,

o (4.3"’») it follows that:

Kot Koo+ Ky KS_y g KotKeo+K
1 s m+“m(p+q') o Py (4,38)
‘: » ”
= WP+
Applying formula (4.31) to polnts P', C and P (Fig. ©5), lying on a line of

ordinutes, wrere p = O,

o BRI Ao s e e TSRS

‘ EST
for P we have I»(90 = 27,

ror C »> Kc&-EF- ’;‘g,q’, -;-

for R >> Kb = «2f ~ Ogn, é

liences ;
or: ;
Knlg—¢") = 9K, —¢'K,. (.3 i

Dropping in (4.38) terms of fourth order of smallness and substituting Kgo by

formula (4,39), we obtain:

P«-“ﬂ{ Kyt K. 4 K, } +l‘-
2 s (4.50) i

Here Ka’ Kc' Kb are Causs curvature of vertexes of the trlangle ACB,

.
' .

ValueﬂiﬂgiJl-are of a triangle A,B,C, (Fig. 65b); designating it by 4, we have: :
VLY 2T |
. 3 ' (4.41) i

Let us consider plane trlangle A131°1 with sides of a spheroidal triangle ARC
(Fig. 65b). We find the aifference (A - A,), (B - B;) and (C - C,).
I'or plane triangle Aiaiciz

or, substituting values be, c2 and ae, expressed by the spneroidal coordinntes by P

formulas (4.33) and (4.36), we obtain:
PR ()

hccos A, = 20— ¢’ — = 5
N ...T" P .1
1" TN

Further, in accordasnce with Fig. 60,
cond = cosfa—o)metnacwa’ + sinasing’,
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i
.
?

i
¢
&
.

or, multiplyl.ag thls equatinn hy Zcb according to (4.33) and (4.3%0), we cbtain:

2bc corAmpi~29q'— B0 3gt + 3 + dgr) — L340 430" + 24g')-

!t;" 126" +¢9") — —”;:4 @¢? + 9

(1m
Jitference (1I) and (I) glves:
2 (cas A—cosA)m — l‘i‘f—‘i:?K.(q~q')+Ku(¢—q') +
+Kg+ Ky} ,
Substituting qu(q - q') = ch - qu and considering that er'—g-ll = A, we have:

2 (cos A—~cos A,) = ,-_-:_'(21(‘ +K,+K)
But:

cosA—co A, --—2sln—‘-'-'~;—‘-l-sln -‘—‘:-‘-‘-'-:

(A - AA1) iz 2 small. value of the second order, therefore with an sceuracy of up to

small values of slxth order 1t ls possible to accept:

€08 A — €05 A, w — (A — A )sin A,
Consaguently,

2hc{cosA~~cosA) m — 2 (A— A)bcsin A,

.
but:
Wesin A, m 44,
Therefore.
A-A.--%(?K,-{-K.-l-l(.}-l-l.. (4.42)
o
A—Mm 2 Kat Ky K1+ 2K, (4.42")

First term of thls expression ls symmetric with respect to vertexes of n triangie

and, consequently, should be general for (B = 'Bj) and {C - Ci); the second ternm

perialng only to that ditference, for which the foraula was derived,
Therefore:

A-'-A.--,‘-‘;tx.+x.+x,)+—,‘;x.-T‘,-m.+x.+x.;+:.l

BBy (K, 4 Ky HK)+ B Kim 2 (K 4 2K, 4 K+ Ly (4.43) :
4 ..c‘ “‘%(Ka"'xpll'&)'i'-“;x,-%(K.-{-K.-F?K.)-O-l. ’
o AFBAC (A B IC)my =S, L K HK) L, (4.41)
A2
— el ATt
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Consequently, fermula (4,41) is again ohtalned,

Formulas (4,43) show, how the solution of spheroldal triangle can lead :n solu-
Llon o1t = plune triangle, havive the same sider w, b, o, From (B, 4% 1t follows tin:
into spheroidal angles A, T end C nust he Introducesd dheaun b
reduetions, &0 that thelr slnes wlll Lecome proportionil Lo
opposite sides, Ior terreatrial ellipsoid of differences of
these reductions are the small valuec of fourkh order, Lhere-
fore for normal sides In triangulnilon these diffevcioes on:

e disregurded,

For the largest triangle of Honnover triargulation Ly
Fig. v, . .
Foomm Gauss Lhe Hohehagen, Brocken and Inselsberz (ivig. o), wiere

Lhe largest side 1s equal to 106 km, and spheroidal excess 1s nearly 4"9, tlw dirfer-

ence in reductlons, according to data shown helow is less tlan ofo003,

Vert axes Differenses
o videcon Hohehagen | . A— A, = 495113,
Brocken , , . .B~B, =4 95104,
Inselsberg . . . C—C, =4 85131

For large Algerian triangle Mulhacen ~ M'Sabina -~

de280an i Filhaoussen (Fig, 67) witk the longest cside Mulhacen —

M'3ablna, was equal to 270 km, the differenne in reduc..

tions are less than 0"001, for lnstance:

M'Sabine Muthacen A — A, = 23,5866,
¢ [ M'Sabina BB, = 23 5866,
Filhaoussen C - C, = 23 5873,

Filha "

I'ig. OT.
Formula (4,43) and reduced numerical characteristics of differences of apheroidnl

reductions again confirm the basic deduction that spraroidal triangles, whose szides

do not exceed 200-250 km, cen be solved as spherical,

3 N = = = = 1 - )
For surface of a sphere Ka Kb Kc X =s . I -- radius of u sphere; from

R
(4.43) .t follows thati:

~‘.'."‘A|"':|, . . AR — -
B—B =2 ) (4,441)

c-c‘ - —‘—

W

l.e,, we arrived at the Legendre theorem,
In the contemporary geodetic practice by radar methods (Shoran, Hiran) geodetic
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| nets are laid out with gides of 400-500 km, It is true, the accuracy in such nets

is now sueh that the geometric figures rormed within them can be ac

tepted as spherical
with nroper selection of a radlius,

llowever 1n time the accuracy of meagurements in
these nets will, probably, bhecome go Edph that a necessity will arise for calculation

,
| .
. e we s

é of spheroidity or geometric figures, Besldes, 1n adjustment of astronomic-geondetic
Y
; : hets figures are formed with large sides and in composition of condi’ onal equations
T of azimaths ang coordinates a necessity ariges for calculation of spheroidal correc-
E tions.
Certain geodesists here and abroad propose to form from dense neis with compAar-
. wively small sides nets of large triaingles wlih sides 250-300 km, In resolution ol
such trlangles spheroidal correcticns should also be considered.
Formilas (4,43) are derived with ap accuracy up to small valués of the second
vrder. In solution of large lriangles, mentioned above, in formulas, terms of fourt);
order should be tonsidered, This can easily be done, since for obtalning terms of ¢! e
highest order, spheroidal triangles can be considered spherical with g very high de-
cree of accurscy. Then to formulas (4.43) should be added the spherical terms of
feurth order of Legendre theorem from (4.6), 1i,e.:
. '00 ‘ll 'A‘
. : e (1} e g%, m'—8%) W ——(m'—Y),  where
: MR{‘ ) “m:( ) mR;( /3
L 4
w Gy
L RW
Then we have: - ‘ ‘ ‘
. A Ay .. B2 K, A K, + N | JUUPE |
C‘ ‘ l’ 12 2K, » Kt)+ GHR:. (m a*)
t —y - Ak o e
; (=8, .. 2 M.+2M+Kﬁ+0wyw',7 . (4 .4n)
3 . AP" .
H C—=Cy oo Sy 4 K + 2K} 4 e (8 e 8
; 1 ”l.+ N ')+ﬁokz,‘ ) “
, a
i Sums g K} .
3 =K+ K) (456
i Let us designg, .. ﬁi‘_?d.‘_'fz.,
; then:
LYY My

.
Anw. (h.u?) .

Subatituting (4.46) and (4.47) in (4.45),

we obtain:




b L Ke—Ke) | & ke (mt—at) )
(A—A) - 3 + ) a + - Ka(mt —a")

7] [ [ K."‘- _‘:_ — : Y
@By = 54 £ (Henke) g T Kotmt 0 4. (4. 48)

o 8 (KK -
C—cy' =3 +':s( Kn -)'*' o fatmt =0 -

Tn (4.48), as earlier, K , K and K, are Oauss curvatures of vertexes of a

spheroldal triangle,

Formulas (4.48) are appliceble to any spheraidal triangles, whose elements can
he directly measured by geodetle methods on the Earth's surface, Frronecusress of
Lhese formulas for triangles with sides 400-500 km i leas than o'no1,

Examples of the solutlion of spherical triangles hy Legendre tLheorenm, und by

additument method, also solution of large spheroidal trinngles are given in ¢ 71 and

3:-3,0081 £33 000K E v b LIRS R

72 (p. 27¢-276) of Practicum on the Higher Geodesy,




CHAPTER V

CALCUTATION OF GEQDETIC COORDINATES

§ 24 GFNERAL CONSIDERATIONS AND DETERIINATIONS

In the contemporary practice of geodesic work in the USSR geodetic conrdinates
of vertexes ot triangles are calculated only in 1st order triargulstion, ‘Triangula-
tion of other orders, polygonomeiry and speclal geodetic nets are culenlnted on Ghuns-
Kruger projection by obtaining grid conformial coordinates of points, Caleculrtion of
coordlnates of geodetic point: 1is the last stage of treatment of results of geodetic
mensurements and is carried out with particular thoroughness and mathematical stricts
ness. Later these coordinates are published in special lists and for very prolonged
periods serve as a basls for scientific investigations, state cartographie work, re-
senrch and for engineering construction, also for long distance ways of communicatlon,
explorntion of the Earth's bowels ete,

Like sny engineering construction, geodetlic construction must possess great "re-
serve of durability", This position presents definite requlremeris for the treatment
of results of geodetic measurements and; during calculation of geodetic coordinuntes
n condition 1s set so that the error of state calculations is to be 10 times less than
the errors of nonstate fleld megsurements,

.o adJustment of 18t order triangulation relative error »f & slde 1s equul ap-
}* . clmately to %? = 335%535. Msxyimum length of side of 4at or{er triangulatior by

<oemporary scheme of construction should not be larger than 25-20 km, Hence LT
3 = 05\ . then, OH8 =« 0,083 m, Thus, position of a third vertex of a trimngls in tri-

1gu1ation rnlative to any two other vertexes is determined by results of field
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mensJirements with mean error not greater than 8- centimeters,
In order to determine the inrluence of this error on the dirferences o lautltudes

and longltudes, let us use formula (%, %0c),

We have:
: Ab” =(l)Ascos A . (5.1)
: AP - {2)AssinAsec B
?. Here Ab, Al are ervors in differences of latitudec and longltudes, 'Taking As =
: = My, (1Y = (?) = -3%. we obtuln:
3 80" = G”003¢cus A,
. & Al = 07,0035in Asec 8.
= With extreme azimuth:
z . AP’ w 0,003,
T AP = 07,003sec B,

Consequently, error of calculations of coordi -+es have to be 10 times leuss thar:
olous,  Coordinstes are calculated by means of conserucs,. algebraic swamaticn ot
thelr differences whilch leads to accumulation of additional errcrs of rounding; con-
sidering, this, the differences of latitudes and longltudes of polnts of 1st order
triangulation are calculated wlth an accuracy of up to 0'0001; in this cace the error -
In difrerence of latitudes of' two polnts, 200=-300 km, one frcm another will he no
lurger than 0003,

_ Direction azimuths in triangulation are obtained by angles, derived from 1ink
‘ﬂ adJustments to a thousandth fraction of aysecond; conse~vently, geodetlic azimuthn have
j to be ealvuvlated with accuracy of up to ¢)ooi. ‘
g Where the length of a side in triengulation is 30 km and extreme azimmih for
v difte rences of latltudes and longltudes is by formula (5.4), we have:

45" ~ 1000,
Al = 1000” sec B.

In order to obtain these values with accuracy of up to 0V00Ci, obvicusly, 1t 1s
nécessury in culculations to retuln the eighth decimal place, In logarithmic enlcenue
lationa for determination of accuracy it ls essential to use known relationshipe:
40!”)-»5,5- .
{1 = 0.434% modulus of common logarithms), In our case &N = 0,0001, N = 1000,

Consequently,
0.43.0”.0001 10~

In extreme cagse this value decreases three times, i,e., the differsnces of
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1atitudes qnd longlitudes should bLe calculated with the aid of elght place lorarithn
tat les,

tormilas for calculation of differences of latitudes, longitndes mnd ariputic
are obtalned In the form of a serles by ascending degrees of %, which are consldered
amnll vatlues of first order, The remaining values in determination of their degrrec
of smallness are compared with %. Differences of latitudes, longltudes and azimutis
At maximwe value, are egual to %, expressed in arc measure, therefore b, 1 and 1t nee
1180 smnll values of a first order., Wrere s = 49 km, % = 5%5. Rt vg - ?%3. The

. o o
values ¢ and % are small and of a 1st order, Calcnlations with elpht pluce Labiles

ensure u 1 x 10'b fraction of a glven value. If % = 5%5, ithen for gusrantee of Indi-
cated accuracy it is necessary to retain (}i;)‘- ._JL_T:, i.e,, 1n derivation of
1710

rormulas for cnlculation of differences of latitudes, longltudes and azimuths it ic
necessary, as a ruﬁe, to retain small values of fourth order within them,

A direct geodetic problem 1ls where geodetic coordinates of flrst point, and the
distance, and azimuth of direction from first point to second are given, o calculate
coordinates of the second point aind the back azimuth, Tuls problem can be solved by
difrerent ways. 1t 1s possible to set as target to determine the unknown values di-
rectly, 1.e.,, by the direct method, applied for long distances between points. TFor
short distances, such as the sidec of ist order triangulation it is more expedlient to
calculate at first the differences of latitudes, longitudes and azimuths of the table
determined and initlal points, and then by simple summation to obtaln the unknown
values, i.e., latitude, longitude and azimuth for the second poilnt. Such approach is
called the indirect method, Advantage of indirect method for short distances is that
tue difference of geodetic coordinates in calculations with eight place tables are
ohtained with the same accuracy, as with ten-place calculations of the direct method,
Although classification of methods of solutions of the direct geodetic problem is
conditional, nonetheless this terminology is conventional and 1s convenient for ex-
planation of geometric mpproach to solution of the proolem on hand. With indirect
methods several methods of solutlon of direct jeodetlc problem are distingulshed,

The most important of them are:

a) factorization of differences of latitudes, longitudes and azimuthg by ascend-
powers of length of arc of geodetic s, where this factorlzation can be satisfied by
initial (where 8 = 0) and mean arguments;

b) the method of auxlliary point, when from geodetic polar coordinates (s, A) &
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conversion ls made to angle spheroidal coordinates {p, q), and rrom them Lo seoaerice

=) one of Lhe possible ways ot solutlon o the probler consists in that In coa-
formity with o determined lnw certaln part of Lthe surface of the ellipsold ls depicted
vnr s ogpnere, loe,, a tranaition 1s accomplished from spheralidal clements of the prob-
ler to corresponding spherical; the preblem 13 resolved on o gphers, then converted
r‘rom geodetle coordinates on u asphere to geodesie coordinates on s spherold,  Very
Yrequently In o golution of +sn indlested vroblem tl:e sphere In ised as an auxlilliary
cuerace ror mothematleal transformations, tut the final formilas for calenlat ions are
ahtatmne b on s aplerald;

4) simewhat lsolated 1s the method of solition of the prablem with the help of

“celhords of an ellingold, In this method form-:las tfor tinding unknown values are oh-

talned In a closecd form and can be applied to chords of any length.

Hhown nbove are only the basie principles, on which methods of resslution o’
direct peodetlic problem, ure buased, besides there exists » multitude ol' differsnt op-
tronches and methods of uprplication of these princlples, Inasmuch as resolntion of
this problem is one of the mass florms of geodetlc work, then the requirement o sim-
plielty and convenlence of culeulations !e very essenlial,

Onleulation of geodetic covrdlrnates, esrentlully, ls a comparatlvely almple geo=
metrle vroblem; however in thic aren are many mnthematical investlgations and sclen-
flrlv work, ihe geodesisis and mathematicinans of UBSH and abroad are wovkineg v Lhe
problem ot the more expedient resclutlon of geodetle problems, The maln Lendency or
investipatlon tn this aren ecurrently consists of composing tformulas and tallen, cone
venlent t'or enleulations with application of caleulutling machines, whleh are gemtanl-
ly winning permanent posiilons 1In nll areas o computer technology, All termming
tables t111 now were caleulated for logarithmic cealenlqatlons 611l widely ased o
pre sent,  ‘Theretors, along with the new proposnls tor use of nonlogarithnice nethords
o erleulations, further below will be presented logarithmie formulas Cor ealcualuticos,
ot geodetic coordinates used at present,

§ 25, FACTORIZATION OF DIFFERENCES OF LATITUDES, LONGITUDES AND
AZiIMUTHS BY ASCENDING POWERS OF s

Let us assume that polar ccordinates of polint "2 {s, Ai) are glven, 1! 1a re-

quired, knowlng geodetle coordlnates ol point Pl’ to find dirterence of latitude:,

longitudes and azimuths of points PQ nnd Pi (Fig. 68), Imagli» that we move ulong
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» the arc s; to every point on tiils urc will correspond a definite veodelie

A

coordlnnle and azimutk cof direction of tie wmovement, ucn fanetionsl de-

pendency can be exprecced by parametrin eountions:

. BB é
i
% L= L{s) . :
s A= AG) ;

A
Allowing that these functions have all the derivatives with recpect

e, 8, : 1,1 i 4
Lu s, and designating them correspondingly by F°, L7 nagd A7, we i ve

Maclanrin series for these tunctions,

d=n

J
B=Bi+ YL p i
v+ 27 E
l-l .
T
L L.+2“L {2} 2 .
i-
l-n
A= A.+‘S‘ = Al
HE 0
where Bl w -— ) Al o -( >(l“l.a.3 .a), sign "1" means Lnat this value or
i
derivative i1s calculated where s = 0 or B = B1 and A = Ai' First derivatives E R L' {
' {
and A are obtadied 1in Chapter III and in accordance with (3,40a): '
sy V3. cos A
£ Ve r— A
¢ f
L:-V-ﬂﬂﬂmp (:3'2|) KA
;
Am Vllnﬂ‘ga A

From (%,2') it follows that Bi’ Li’ Ai are explicit functions of latitudes wand
azlmuth and implicit unctions of s, therefore derivatives of the higher order are
found by rules of differentiation of implicit function,

GGeneral recording for derivatives of higher order:

[ i~ 1y, B 9 -y dA :
BB ) T @Y x

[ -y 48 L] -ty 44 o
L‘--;.:(L‘ .)7.—-+-.7‘L' ‘)““.— . (513)

S

[ ] -ty 4B [ -y d4
M BN LBy S :

Further we have:

VaVits =Vi+etcots,
& _._.-"__.._.___ﬂ':":*’ e il

—
i}
.g— . -!!— .-—-.d. o~ - —-—-""‘ cus A,
[ ¢ d8  ds €
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Prom formulas (5.2')

g ]
B I g Ysinath,
c.is ¢ [}]

L - sac Bain A . i v . A ﬂ l ‘4_4_
o e & + p; tsec B.sin @ + - sec Beos A g
I3 A" - !‘.’L‘.l.’i

| 4 a8 | 4 4R
+ -+ e o+ — f —
I (l (')sinA A cosd - ¢ " .

PG

ety ) dV  dPF dA - T . 3. ) .
Jubstitating values i i T and satlsf'ylng the reductlons we obtnin:
=2 ~

- —--:'-}(unm .14 JcostA v2)
L"-%V'secbslnArosA-l ' (ho )
A"--:T'-stndtos.{(l +2 4 )
e IV pcint LA of 1
B = (sin* A7 4+ 3cos* AvYy) - [sin® A{! + %) 4+
+ 3eas® A3 -—t’)l—‘-‘%—%ﬂsinAcosAr—GcosAsinAv,'o%,
L4 4V N _‘_V_ .9.'."-
L ..-;.-.sccnsmﬁcosdt @ + = jsecBsinAcos A X
x 0+ 22 + L isec Bleost A—sin® ) 1) 2L,
Y 1 Y ot A sind
A p sinAcosA(l 1049 = + = {cost A —sin*A) x

TR L oty S8
xX{1 +2¢ LY e ‘,:lnAcosAlw-r?l' W
Substituting values g-S!, -(dr? and g—g, we obtain:

- —-%‘eos AfSIFAQ + W 4 P — O30 4 cot A(3 M —
=30+ 37 =154 1)
L= %uc B{sin Acos® A(l + 3 + 71) = sin® A} . (.5)
A - -:—'-(sln Aco Ar (54 68 4 v — 4 %) —sin® At x
3 (| + %t 4 +9)

Omitting details of calculations of derivatives of the higler degrees, we redicc

them Iln final form to:
B« L 1sint AQ 4+ 30 4 w08t — it Ac0A x

_ x(4+sp-|av‘--9~.':'-m°+4s,.4m+%‘-x
. XIPeust A(12 4697 - 45 P8 4 57 51— 105 93 W)
: i V= _"'.iunAeo-Amm(z+w+v.-—q')--:—"x
xeln®AcosAt(l - 304 M B
AV - %alnlcu'A(S%-ﬁ&' IS Iy PR e S
+A L=+ U O
Lot Acon A(1 + 200 4+ 241t £ 304 8900 £ ' — 12419

- (b.0)

Y

As it was proven in preceding paragraph, to guarantee te requlred scciracy of

caleulations of differences of latitudes, longitudes and az’ muths it iz necessury to

-

JRESSF R N i, R

A%y,

«*

+
]
i




re-aln snall values to fourth order inclasively in the formulas,

ences we will give fifth derivaiives In spherical precentation,

He tave:

B~ -;-s!n‘ﬁcosll(l + 307" 4 4579 - -’:-,'—sln'.«cauu +
+ 0% + 301 + 4, 9*
L" = "2 sin Acost Asec B2 + 157% + 15— 25 x
X sin® Acos* Ase. B(l -+ 20¢ + 30/ + 4';‘;-: sec Bsin' AP(l +

+3M+ 4L
A - —‘V-:-sln Acost At (61 + 180, + 1201‘)——‘!:1 sin® Acost A x

However far refer-

e, we will tnke

i A - A T ety R ‘m @Eﬁ;

X (584 280/° + 24011) 4 S sin Ae(l + 200 4 24+ Jy oF J

Ve desighate:

0.---!;—::-'(! +3t 4P — 99t 6.---——' (="
bomr g #7111+ 30 10— 9920,
5 ._T"‘_ 16714 + 60— 1312 — 9720,
h.-o—-' ",
by = Tm?o’(' + 0t 4 4514 "

v,
‘ b.'.- ~ oo 07 (2 + 150 + 1509,
,._L_ LTSN N A AR S 4 ol S
4 b Pcosb © t b Adcosh ©

- ccon 8

+ 9 l.--——!-.lf:-(l+31’+7.');
b= @3ty b &o«.s"“"’
Vi, . .

""iﬁti“’""s"‘“s"" b=~

=t om L2 = Y20,
o= B G or ot —aa e L 0200 2 4

R L L1,

B S5+ 280 42400 460 4 841% 0, = D01 4 2000 4 20
a.-----fss+w+240c‘): c.-—(sl + 180 + 12049

With these designations iifferences of latitudes, longltudes and azimuths will

take the form:
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1 b= By By m B 4 8,02 + bg® 4 byt™ 4 by + bt +
+ Bttt o Bt 4 0% + b % + 4y
2l gL, =l 4 bpu 4 Lo + fou® + L,ou + Lt 4 ()
o+ 0P o ot B0 4 v ' o
3 t=Ay—A =ovtaputanp! + apu’ - au 4 agou’
+ a;0* + a4 a,0ut 4 I 13 '
A, ~ A+ 180°,

Forzalas (4.9) are tinal. Cuefficlents bi. b2, iies hiu; Lys 1?, e 19; Ay

Gy eeer tg fre the functlons of a latltide ot n priven polnt .nd car be tibulated,

The atthor {nvestipated tnese formulas in 19496-1357 totl. with respect to Lheir

qeeturaey, and with respect to the compositlon of terles for coefflclents ays bi und

Lyo Regults ol Investigations were putlished in an article "About Nonlogarithmic

Caleulaticns at Geadetie Coprdinates ot Peints of Flrst Crder Triangmiation in UssR."
At present Lhe tables ot coetficlents ﬂi’ bi and Li are avallable, The Bulguriuan
Acudemy of Sclences, in 1957, 1ssued tables of Academiclan V., K., Khristov, "Tables
rer deodetle tonversion with the Aid of Arithmometer ot Geographle Ccordinates on
Krisovskiy Ellipsold for L:ititudes 0°~70% for Euch Minute."
Academician V, K. Khristov confirms in his formulas small valueg of fourth order
f.clusively in reference to u and v, Khrlstov formulas have the form of:
By v3 By - byt + bptu™ & byyt® + by + by ut® 4 byt + Byt

Lym Lo+ 1,0 4 Lo -+ Bytt'o - L0® + L'y 4 et
Ay = (A, - 180°) 4 0,0 + oy v + Ayti* 4 0% 4- a, u™ 4 o w12,

r
v = 1077 s sin A

Formulas and tables of acadenmiciz: V. K, Knhrigtov are fully sultable for caivn-

-l
here 1 = 1077 3 cos Ai’

latlon of geondetic coordinates of 1t order triansulation polnts according to conten-
porary ccnstructicn scheme In lhe USSR,

Formulas (%5.9) can be applled feor calculations where distances are 130-150 km,
For th's 1t 1s necessary to supplement V., K. Khristov tablec with coefficients where
U nd v ogo to Cifrth order inclusively.

Formulas (5.9), as basic mathematical relstionships, are ulso used for ottaining

cther formulas for resolution of geodetic problems and cerlvation of the so-called

differential formulas,

lWorks of MIIGAIK. Fub, 29. M., SGeodezldat, 1957, p. 27~32.
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Fyample of Calculation of Differences of Latltudes,

Longitudes nd Azimuths by the Formuales in {%.1) are:
Byes §2°19°83°,2718 B, = 3", iy == 4387 ASS ag = 20417 ,379
Lye 250485 .3015 bym -2 luTi Iy o= 62,2862 ¢y = 67,312
A.-m 07 51 447 By = —11, 2553 = —0, 2961 g —b) 3

S 82618,157, by = —0), 8568 Igm 1,2463 aqm 1,199

om Ay = 0,158 68867 b = i, (e? l.--o ni7e agw 4,018

o Ay men?) mme.-v 016 Iy = 0,0229 .-.-om

= 0,083 ¢3¢ By 0, 204

o= —0,81951431

a* = 0,(060719 By TN 6T fpe =227, 1505 ap = ~1528° 0885
Mo =P, 00331“ S o =8, 2306 fyou m -2, 70187 avu w —2,9109

o = 0,260805) byu? ma el 3158 Ly0? ma U, 04152 8o = 1,0449

2° = 0,000562 Bt we 0 WIV3S  foud w4y, 048] a0t w114
&% = ~0, 013633 Byt = 0,008u %) [.;‘u = 0,001 a0 w 0, K2

oot = 0,022536 Bt =), o2 Luu® = 000001 g == 13,000

P =0, 1424 t,c'u' 2 —11,(NN12

o = 0, 0003 A Lyl = ~2271° BI51 Ay—A,m —1530",9676
% = 0,009 253" 204 [ = 45%07 557, 2915 Ag - I =

e 95707 50° 447

P o 0,0117 b- 424° 358 | wm —37°51* 8151 a= —25'30", 968
¥=0, l.-(?‘ﬂ'l?' 6282 Ly= “res” ST Ay m 9842107 47D

§ 26, ICHREIBER-170TQV RORMULAS FOR CALCULATION OF GEODETL®
COORDINATES OFf 13T ORDER TRIANGULATION FOINTS

The geometric formul: (4.9) give tles between geodetic coordinates (e L) und
polar coordinates (s, A). In certaln csses it is expedlent for culeularion of dif-
rerences of latitudes, longitudes and azimuths to nse rightezngle gpheroidul cocrldl-
nates {p, q). Tne problen in this case is resolved in the following muaner,

Firat obtain spheroidai ccordinates p and q by the pelar, then ‘he 4lfterences
of latitudes, longitudes and azimuths are expressed In functions »f these ccordleates.
In other words, first of all resolve the right-angle spherolual tri-
angle P,CP, (Fig. 69). Since in this method in the beginning it is
necessary to determine the latitude of point C, this method 1s fre-

quently called the method of auxiliary point. Principles of such a=

approach to resolution eof a problem were proposed for the first tine
by Schreiber by whose name for the most part the formulas and method

of a given resolution are called.

Both derivation, and the form of correction terms of the formi-

Fig. 69,

las, used in geodetic calculations in USSR, differ from corresponding
Schreiber formulas. This circumstance should be underlined since essentially the
formulas for solution of direct geodetic problem differ one from another in correctlion
terms, the main terms almost always coincide. Schreiber formulas were obtained dife
ferent ways and investigated by F, N, Krasovskly, who established their fitness for
geodetic work in USSR, Variant of these formulas was first obtained by'A. A, Izotov
and published in geodetic tables.

Formulas for spneroidal coordinates by polar were obtalned in § 22 (4.34), and
by designatlons in the preceding paragraph have the following form:
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p-u+ﬁ£&ﬂ.“_t.’£h. + i

3]
2K K +K
geo—mtttE Ay
M
™ tere Fo. = K and K o are sinuss curvature of vertexes i,, C and ', Witl accue
; 11 ¢ ne 1 2
E racy dp to small values of fLlful order we can accept In these formulas that Kp:1 =
) = KC =¥ = 15. where #, — mean radius of curvature at inttiul polnt Pj. tuens
.;, ¢ '?1 []
»
. ayfl —
p=uft+ ue:)‘“‘ .
r ’
o » 7,40
= Y l—- ) l
) ( ii? + & ,
We calculale the difference of latlitude of the given and auxiliary points, by
; deslenating Lhe laulltude of the later Ly Bo' For that we use the first formula from
. croup (5.9).
; In our case on the line of abscissas:
AwD, vax0, uwp,
theretore:
By—- B, = b= bp 450 + bp* 4 bp* 4 1y
or:
bmbp(lh Ep 4 2P0+ )it
s, ) by
e end term of this expression has the prentesrt value where p = 8, Wlepe % =
i = 1/50, B = £0° we obtaln:
'-.-l~ L xR PO 1,7-2-m8 AR
¢ Bubflons = e VN e e J‘I.'m)'
g Consequently, even where ¢ = 130-140 km this term can be dropped,
v

. Introducing designations:

M= bme by 2ER ) 22— ()n 205 = ),

and converting to logarithmic torm, we obtain:

1b = I dee (D + U HENU 4o | :
B, B, +b N . (5.11)

Sign "4" for values in formula (5.11) in this case designates thal it is token
from the tables by argument of latitude of flrst point., Main term in formulas (%.11)
will be B, others are called correction terma and are exprecsed in elghth decimal

sflace of a logarithm.
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Huving obtained the latitude of the origin of the ordlnate g (i.e,, point ), we
con tersrors Pormalas (0,0) ror Feodetie line (J!:? and obtaln e difrerecce of ot -
Pades, dorcbtuden and converpence of meridlang of Rk woan and eIl iey nedrg,

tor erdlnates & - 0, voeoq, p o= ou, 1L thervivre trollows rron foreslze (01
[T I

I ~d= By—B8 = b3+ Ng* + 1,9
2 lmLy— L~ By + 60+ Gg* + ot : {4
S t=m A —A ~alg+algrtajet +Hi?

Slen "o" indicates Lhnl tiese coerficlents Luke accordineg 1o the L0t de o
Lige ordinates HO.

Formula (h.10) and (%.42) can alse be applied for ealenlation of e i Tersaen -
o' lautl udes, longitudes and azimuths with tables, containine coelvlclents, depending
-hothe latitude. Yor logaritlmic calculutlons of furpyetla (5.412) Iy le necessury tu

trarnstorm,

)

After substitution of the value of coefficients l,:g and 17 we ohtalis

6. yl"' o 'lvi
- Bla? o . [ ! H
= B,—B,» —bYg [‘+ 3 v] ‘_: [I-—- o X

x(l+3lz+1:—9v.gtg)],

Let. us deslgnate:

'!‘qu-.ﬂ)'qtgﬂ.ut' " qmﬂ.n),

Lhen:
Memt? -E.:v'p'" -,
therefore:
ten=tm b i L Sy L)
I'"king ndditional designations:
Oh= b o= S0 0 e e

and converting to loparithmic form taking into account that:
st -'."‘-,'lue-s.- »,

we obtain:

I ig3 vt L0 (@ 4 1y, (5.13)
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Thus, unknown 1atitude will be:
By~ b,—d - B +b—d.
For loparithmlic caleulatton ¢ difference ot longltudes we Lransform second
eXpreassion from (.10),

Ve haves
P CRR SO I\ B
‘q + '. V"”' ‘°C +’l"l
) t

0

Affter gubatliution of values 12, 3 and lk,

V%

Vysee 8, 'y vl o'
ra DRt fi By ('+~'u.)}
buts
VesecB, ' 4
Q --2—“.:-‘...&_ - (2).“ Boq - )‘; __‘;8_ 'aqul'. - ‘l.

Tuking these designntlons and converting Lo lopsarithmie form, we obtuain:

10° pet ntv? 109 et
igl=lg)~ ”‘ +' :'q‘u+az.--|—i'—.

"I .'“
A'ter reduction we desipnate
B ot B,sin? B, (6 4 13¢2) = (5
» (7 + ) ‘ )a'
Then for inal regultl we huve:
1gd = 1ghm2ved o U) 2 4. 4y 0, (e 4l

Thlrd expreosgion from equutions (%.12) afucer aubrtiatutlion of values ol coeffi-

clenty u 15 and .--,(; will be:
L
f-r—%lﬂ"{ *!-0(|+?l'+".')+--—-(I+20:'+24l‘)}

} ..ust. tern -%-‘-.- (!1 + 20_ t2 +'e4r ) where B ow 45° . ﬁy- p,% less (—-3-‘.:0) + Howe,

ever azimuthe ave calculated to a thousandch of a fraction of a second, consequently,

even at 120-130 km this term can be dropped.

Converting to logaritimie form and considering designation (7), = -.'";,’.‘.a"

conu D, we obtaint

81 ]
~—

LT L ey ™ (5,18

In acdordance wit: ig. 63 : iy

allle

IR




Iy =2 360° - (90° — f) == (90° — A, + 1)
ure

Ay A, 1800 4 g s,

, .
Lo b

hiere & inoa spherical excess of a righteangle spnerleual triangle P1CP?. calenl s tad
by Lhe formulat
s . ‘L.i
2
hus, calculation cf differences of latitudes, longltudes and az2imnrtns by oo
mebhod of auxiliary point is dene by the formulus:
Igh = g3 (4 -+ ()t 4 (G, 7 o {113
w..sga_..-_-;_.a.--ns).).-, (.1
Ig! = Ighm D9 4 (9) 08, (v 1

e m lge—vid—vd - ()1, (7.1

C-L(-'.
[T

B,=B8,+b—dwB,~d,
Ly=L+1
Ao A £ 180° 4 (=0

In these formulas the tollowing designationu are made:

Uw=gcosd,, p=.sind,
p= (1),
$= 3)20
ter tg by

In USCR these formulas are tak:n for the calculation of geodetic coordinates of
13t order triangulation points, For their application "Tables for Cnleulatlon of
Geodetle Coordinates" were composed at TeNIIGAIK under direction of Protessor A, A.
Izotov, whicn are ucually called "Geodetic Tables”. In these Lables, intended for
logarithmic calculations, are given fnr every minute of latitude lg (1), 1g (2), lg
R with eighs, .1g (3) with six, 1g (4) with rive decimal places.: Logerithmie correcw
tons (Wu?, (T)A2, (8)A2 and (9)A% are given by the argument 1g u and lg . There
1o a speclal table for obtaining cbrrectioné v1® and e, o

Tahles are composed very thoroughly, aﬁd are pr.ovlded with explanatory lLexts
nng examples, f‘acilit','ating application o the formulas, .

AObtuined formulas, dug to the presenc.e in them' in & manner of argument of a.tan=-

gent of latitude, become lese exact in ntrthern latitudes (70°-80°), For these'lati-

tudes they are applicable to distances of not more than 60-70 km, Hut this 1iﬁi-|,uf,.1nn

wl4d- . .
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does not have u great slgnlicance, since by udopted scheme oo construction of 1gt

in 0N, the 8ides, a3 1 rule, should not exceed 26-30 Kk,

order rriangulation
¥ For dlgtances vp to 25=3G km al meun latitudes the derived tormulus can be sln-
4

- e}
% plitied by means ot excention of correction terms (u)jud, (7Y A" (B)HAP and (w)ok .
-

ater whiieh they will tuke the foillowlng forme

lg b= 1 3 — () + (i)t
lgdnlga-w'-;.«u . 1)

‘ gl = ig) —241?

: "lnlgt-—v:’-—v).'

) Farmutas obtalned in th:1s paragraph for cualculation of' geodetic coordinntes do

' N not previde the control of caleulations, Theretore culculations are mude in two

* branches, Lo the gecond bLratceh 1t 1s preferable to use other formulas, giving inde=

' pendent resulls, For that formuluas dare userd wlth menn latltude and a mean azimuth,
whose derlvations will be glven In the next paragraph., Let us note that the cont.rel
ot ¢alceulatlons by the lLehrelber«lzotov tormulas can be carrled out by menns of o
rundamental equation ot u x.oodetle In the form:

6,80 Ay v~ rysin A,

Values ry anid r, are extpracted from i), A, Laein Tavles. Ry a shown Pormtln o
stnetl tineous check for correctness inobtadning unknown latitude and aztmuth 1o meede,
wi.ere unring elght place nalealatlonsg of nzimuths are obtailned wlth an accuracy or
up te 0¥ooq,

Fyamples of culeulatlens by the tormulus are slven In "Practlcws on Hipghew

v teodesy” p, 27H-202 and In “Mieodetic Tables™ p, po.on,

: 4 07, FORMULAG FOR MEAN LATITUDLE AND MEAN AZIMUTH Oh GAUSL FORMULAG

. In tactourlzation of differences of latltudes, longitudes und azlmuths by 5o~

;‘ quences of s (§ 24) the derivatives were cinleculated by coordinutes of inlilal palut.,
" é_ As Lt is shown 1n rormula (21,.3), the Taylor line Ls doubly reduced, if instend of

£ inltinl nzlmuths and latitudes the menn were token. In this cnpe (11 terms wlth wver

.

degrées drop from the seriea, Wlth the same nuwber of terms in serles with npulivas=

tion of mean arguments the accuracy becomes one order higher ay compared to the noe

curacy of series, ohtalned by the lnitlel arguments, Tae prineiple of mean urgiment s

for calculation of geodetlc coordinutes were first applled by Unugs, He evolved o

formula with mean awrguments.

Let us deslgnate:

~142.
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B, 4 B, > .
l‘: Lw B, ﬂ.ﬂ:l:ﬁ +‘|=A.,

(o (G- (8)-n
=12 3.)
o fegle coordinates of inftlsl polnt P1 and polir coordinares fo, A) peic: E?
are elven, Let us divide 8 in hualf and deslgn:te the middle of tie arc s wy O (vl
70). The latitude of thils point and aedmutiy o wecdesie i poe i,
we will deslinute }‘(: and /\('.‘
Vie will Lake paint C for the origin ot the polar vooriinnoe:,

Then apply ractorization of differences of latltudes, lonegldtiaae:

and azimuths Ly serles of g, Lo the two sections o ure i, woisia o=
ing right sectlon as positlve, 157t wg nesallve.,  Llun acoourdance wit

c § " (%.2) we have:
a

By—mB.or L4 lpa Bp L opv, ®opry
Y. IR 2= Be ? Bc + ] B+ “° A+ st By + 384 B+
L]
By~ Bom — 4B+ T B LB+ BY — B

dum and difference of these expressions will bhe:

8,+8, —2B;~ ‘:" B; +:%- 8 4

or:
. )
8,—~B,~ ";"Bé+-ra:—73,f."+...+l. (r.1%)
. LA .
B.‘.——Bl s sllc-lr—j;-;—ﬂc +T§; Bt.-}-._,-f-{" (4\’1(])
Analogously we find:
I Ry ALy A Ny} Y
t ] s N T ) e ?
. ey P a8 ' 6, 20
A=A =3l A" M+ j ( )
# L
Ay—Acm TR 4 AV 4 4L (5,51,

Serles (5.48) and (5.21) show that the differences of mean arguments and azlmuths
o' mediun point of arc are amall values of the second order,

In series (5.19) and (5.20) we will express unknown B,, A

We have:

” by Bm and Am.

, A
B =SS = o8y A =018, + BB A+ 7= AL

Q‘Eﬁﬁﬂ“ tulBe A 2,8, o+ (B~ B,
Ayt (A=A
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'

, sin A tg B,
A = =y = 9B, A)= 9, (B, + (B~ B,).

A+ (A — A
Henees
B.=8,+ )(a h+( —-A) -
L;..L'_+( -), 8~ BH(“) (Ac— AL+,
AL+ (‘7;)_ (8, —5) + (—d—‘-)_ A=A 41,

eich
4] (\lli

cutnrleatinge values (B, - &) and (A = i'\r) trom (4.18) snd (5,21 4n (B, 00),
i L Vi N N

i

o= £ 3 {(Sa), on 4 (3, 2e |+ 4

A= A5 (5. B *(‘5;,..‘-]“--

1 1
With these values K. and A, formulas (5.19) and (%.20) will take the form:

. "
B,~B, = b= 3B, ——[(”\ B+ (55 A:.--';—'—]H.

a8 n A Jm

’ . . l'“
LymLy=1sL, »-—[ ) Bt (), A;.-~'_;‘—~]+la

\"aa’)

’A ~Acam -2 (3:) n,,,+("") A, +-A:‘:;t-]~i-l.,,

ot [m DR

m)LoA,A

rrom (5,01, (9.4) and (5.%) by means of substibuticn of Lndex

] (13 m 1
nle ) d atlve 1 - 1., L ..
itering here derlvatlves Im. I«m, Tn: Im. 1

thien partial derdvatives Lave Lhe form:

) l MA dB'

‘ ‘“).-a——mm

NaVi

:n:.! 042+ (M‘) - eu.-t.f

(a
2 (u) . -uul.mn,L iy (a:.')" ) cum,.mn. ,
* (i

Na
[ot U8 substitinee the ralues of depfvatlves rom (1.00), (
tial derlvatives from {H,24), after reductlons omitled Lere, we
y'..r_“...s.‘ N {: +———mnm (243, +272) +

+a-.=u'A.o:-l-v_—4-..'.'.n} +1,
I o M0 An e By |+..!.'..|.qnl.4 2 weeos' A (1
AR et A et A 0 4
L]
+id=ea ]+,
e - ..e.".:'_“!v:lt.‘:m ¢ {l + -’-‘%lsln'A,,(2+2:&+ 2y
4 oA {24+ 102 + 9818 4598 nl+t
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and Am ohtained

1" far index "m";

La, 0y

SuEY, (b)) ced pare

ohitaln:
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e,

-~

-ll-:;ignu e .
_'_m_}"‘:-_f....m,sma_ - 3ae

_‘.L"‘_‘_-'f"_ﬂ wx (2)assin Apsoe By,

AdndateBe . () 5i0 Al B =

n
[SF
M, N ""
Sty B o T

'Al y:

Neun)’ -
—-————-—~.

'.I

staint A,

by Leese Leaipnations expyession (5.0%) will take form:

b= ?..l' + lL‘_LL_(z 3+ 292) 4 ...'.L"‘ x

| et
G—1—vn— i3 \|
P (S L. S 1.
( v )I'f' )

\

3 07 f.".‘ 3 — ? 42
PRNPYN (.- T SO Y U el UL | O
24,.’ 24'02 |~l

{
a-u..ll+3-1-‘1-—w+n vy P2
4"

247 93303 43
( +\.+v:.. +m-)}+l..

lon of the third by

fFrom the 1ant two formulas we obtaln by means of a divis

vecond:

LI TR Ll WP AP . i
x $4+Tah +0n /4505 | Aqun’s, + ” «
V‘. "'d 2‘"’
x Lt
w)

ar

+ 1.

A2 cos?a, ¥ 3 [ 3+exdssad |
122 24 ,-l vt ’

8 -lsinB.{l + .

Converting frormulas for b, Ut and a, to logarithms we obtain:

o= igh, +vilcos?B, + v 308 4 U
R e Tl T N ¥
e =gy, 4 vl coatB 4982 + 1,
h‘-k"'ﬂnn"l' “FCQ"’; : '.”

e R

[ R T

gy e o
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where: Kiw

¥ S cwra

o’
e 4k -9 /)

vy .

e Q430 4 200

* 9 ,¢
vy = j—y g."" 14w o)~ v Y
4 v, .
g == --—.V:,.

tavraritnms of values Vs Vo r3, ) and HAAN argument of menn ratitude ure
eives dnoeedntie tables,

Formial o (0.0, nnnely those, wideh were oblalned by lnuss twive in the second
artiele of "desesreh tn Higaer Geodesy"! by conlormal presentation of elllpsold on a
3y bere by menns o' factorlzatlon in series Ly powers of s with mean srguments. There-
Pore they are called Gauss Uermules, v

Iy siauss lormulas smull values are retained to third order inclusively, as in
Sehrelier formulas, but thelr advantage in comparison to dchreiber tormulns with
respect Lo aacuracy consists in that the dropped terms in them, small values of rif'th
order are 10=15 tlmes less than in Sehreiler formulas, UEffective correctlon terms
ln ousc rormalas nave 4-5 times less correction terms than Schrelber formnlas,
Therotore faucs formulas can be used rfor calculutions of coordinates for greater
distanees, than dehpeiber formulns, In iwdentienl requirements for accuracy ot in-
Kaown values Gauss tormulas ure applicahle ror distances on the crder of 200-231 km
wishin latitudes of 0“0-700. If however inh dittere.ces of latitundes and longltudes
0":01, and in szlmatis ©V01, are retalned, then these formulus cun be used for
distances between polints up to 300-350 km. We mention in pazsing thet with such
distances, ns u rule, necesslty does not arise for calculatlon of differences of
Istitudes und longltudes to &'0001. rFor distances on the order of Z00-400 km it is
surficlient to calculate differences of latitudes and longitudes to o%001, aad azimuths
to 0"01, Then relative error %? in tranamigsion of ¢oordinates both for short, and
long dlstances, will be of the sume order,

I'ransmisslion of coordinates to still greater distances, l.e., to 300500 km, in

practlice of contemporary geodetic work Is encountered comparallvely rarely, For that

G, F, Gauss, Selected geodetlc work: Vol. II. Higher Geodesy, M., Geodezizdat,
1958, p. 86.
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case it 1s possible to use complete formulas with mean arguments, given in geodetic

Lat.les., They clco are obtalned Ly a method of inctorization of dil'ferences of

cocrdinagteg and azimuths in power series, but witn retentlon of cmnll values to FittL

order inclusively. Therefore, avolding repetition of preceding derlvation, we shew

the formulaz in their final form:
Igh o lgp, 4202 coB, + vy32 +1,8707 4 100
Bi=lgh, + b prprm gt 2 (r.201)
goerlge, +odleos?B 4 v 32— 8134 x 0t o3 J

As compared to formulas (5.26) terms appearing nere where # (1 =1, 7, ..., n),

whoute logarithme are given in tables have the follewlng expressions:

Wy

120t
] --!3-(4 15/%) cost Be
1w g 14+ 1507 cos

g = -l'?(li.’l’ +1%)cos* B,

1 e -'!E(u + 402+ 15¢) cos* B,
% = %sln'n.
-.-{3‘-(7—6:*)&95.

In calculations by the formulas (%5.26') in general cases the method of succes-
sive npproximations should be applied.

If there is no approximate value of mean azimuth and mean latitude, then in
applicntion of formulas (5.20') it is better in first approximation of the problem
to resolve 1t by the Sechreiber formulas, In thls case the number of approximations
will be cut in half, If in latltudes and longitudes only 0o"001, and in azimuths
0"01, were retained then these formules can be appl.ed for distances of 500-600 km,
Such distances in contemporary geodetic work are met in radar measurements, Thus,
fermula (5,26') meets the requirements, which arise during radar geodetic measure-
ments.

For distances of 25-30 km formula (5.29) can be simplified by dropping small

vnlues of fourth order, i,e,, terms wlth n2. Then:
w= Lo,
-;--:-v+-:--t‘.
uw=0,
bl

i

Substituting new values vy, v, V4 vy 8nd yg in formulas (5.26), we obtain:
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Y

5 lgb = I, 4 5 M+ T 4, !

ey
W

gi=lp 45wt L8 g . (n.27)
" ‘ - . - 4

Ko=lgr, 4 —;—-vl:«——;— vl 4 -%..pg_-u,

. Formalas (5, 27) huve been used tor = long time 1n Russly in treatment o 1st
F order trianeglarfon and only slnce 1408=190n were replaced by formnlas (5.47). Tiis

rep acenent huappened ai'ter publicatlon of geodetic tables of milicary geodeslst

el

serarntorsh,  bDeplvation and roungation of formulas (%.17) and (%.27) werce t'irst
clven bty 200N, Epszovekly,

Al Tormilag whith mese. rouments have that Fenerul deticlency where durlny sol.-
tion o direes frodetic problems 1t 18 necessary to apply o method of approximstjons,
whien o numher ot approximarions is unknown befersi-nd., It Is true, a number of up-
proximations can be decreased, {I' cartographic materisls for determination o approx-
lnatte values of mean argumentg are used, Fut suet additionad work 1s hardly desire
aile to a vomputer, Thereture most frequently thece formulaz are used for control,
when mean arcumente are known wlth sufficlent degree of aeccuracy., Pul the methodlical
merit of (uese formulas remalns in force,

Exumple - caleulailon by the formulas (S.Eﬁi) 1s given in "Geodetic Tubles"

(p. ©4), and for rermalas (5,27) in "Practicum on Higher Geodesy" (p. 704).

. e

$ M. RFSCLILEON OF DRIRECT AND IHVERSE SFODETIC PROFLEMS Y A MiwHoD
OF ChORUG OF ELLIPSOID (STUDY OF N, S, MOLODENSKIY MFTHOD)

The ldea of applicutlon ol chords of ellipsoid for solution of reodelic prohtlems
1s not new. As far back as 1799 Delambre developed 2 method of resolution of chord
triangles for terrestrial spherold. In 1859 famous geodeslst Bremiker in work
"studien Uber Hohere Geodisie" proposed elimination of use of geodetlcs by means of
ES rormation instead of spheroidal triangles of rectilinears from the c¢hords and so to
resolve geodetlc preblems, utilizing these trianzles., This idea subseguently devel«
oped by him In the indicated work, OCeodeslsts In the past both here and abroad have

returned to the use of this ldea ia veference to particuler problems. kscently tiis

i problem was ralsed again in the USSR and was originally developed by M. S. Molodenskiy,
* b S .
o The advantage of application of chords as compared to geodetics consists in that,
5% independent of the digtance between the points, finite formulag are obtained ln
R
¥

closed form uas a combinatlon of elementary functions. Ag can be seen from preceding

account, the application of geodetics during resolution of gecdetle problems leads
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te formlus in the form of infinite series, in fact of fast convergency. However tie
udvantage of the use of chords for resolution of principal geodetic problem disap-
‘eers, 5 soon as necessity sarises to have a length of arc hetween polints on tir
surface of an elllpsoid. Chord and elliptic arc are connected among themselves by
ceries (7.2f). Transition from chord to arc again returns us teo infirite series,
surthermore, in presentation of an ellipsold = n sphere or pline application of
peodetic lines gives general solution of the problem, whlle in appllention of crords
this generalization is absent.

Ti.e theary of a method of resolution of geodetic problems, founded on =pplich-
tion ot chords between vertexes of triarngies on an ellipsold, is presented in M.
“olodenskiy work "New Method of Resolutlon of Ueodetic Probleme". 1In this work
formulas are glven for solution of direct and inverse geodetic problems, differentinl
formulas are studied, and formulas for reduction of messured directions to the sur~
race reference-ellipsoid and transition from one geodetic system to another during
conversion and reorlentation of reference-ellipsoid are given. To this section of
the course only the first problem pertains. which we now take up,

Let us assume that on a spherold two polnts Py(xs, ¥4, 24) and Py(xs, Yo, 2p)
are given, by their space right-angle coordlnates, s — chord, connecting polint Pi
and P?.

We have:

X e NcosBeosl
¥ NeusBsinl . (2.16)

:-%mma

M. 5. Molodenskly considers the more general case, when points do not lie on
the surface,

Further, x, = Xy = s cos 4; Yo = ¥q = s cos B; 2, = 2y = S ¢os vy, where cos @,
cos B and cos y are directlon cosines of chord s. Let us designate them, according

to M, S, Molodenskiy,

€os3 = {,,
o5} mmy,,
€087 = Ry

2 2

From differential geometry it is known that cos™ a + cosz B+ cos®y=1,
Substituting values of x, ¥y, z from (2.16) and combining plane yz with a plane

of meridian of first point Pi' i.e., assuming ¥y = 0, we obtain:
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1. .l’“ - gy~ %, == Nycos Bycosl— N,cos B,
< - » .
§ 2, t"n"ﬂ--—h":-‘“at“"’ \ (1. 28)
3. Myym—2 - o (N, sin By — N,sin B,)

- where 1o 1s o direrence of geodetlic longitades Crom merldian 1 Ralsing (. 08) Lo

B 1¢

aogquare and adding, we obtruin: . R

&
- B NT o NT 20N, (sl B,sin B, 4 cus B, cos B,cos ) —
- =X (M, 3in 8, — N, sin B, .
besipnatling:
cus? == sin By sin 3, + cos B, cos B, cos 4,
ror J vy means ol Ldentlty rrangformation we have:
- P .
3 ND 4 N3NV, + NN, — OV N, sy — s ¢
_ X {Nysin By— N, sin B,
- Hence:
& w 4NN, sin® -:- - = . (Nysitt B, — Ny sint B + (Ny— NP, (4. 29)
here:
:ln'-:— - sin'—"—(B.-B.) + cos B, cos B, sin® —!'-I. ’ (5.3¢)
In (5.29) the first term of right side 1s main, and second and third are small
values of' the order of compression and the square of compression of terrestrial suher-
¢id correspondingly.
LB 4
For kKrasovskiy ellipsold —-‘—-——;;—-t-’— = 0,01334 0042,
n
Let us imagine a sphere of unit radius (Fig. 71), on
: which P1 lu o geodetic zenlth of first polnt. Laylng
5 Q out f'ror thls pcint to the right, an arc, equal to
g 90 - Bl,We obtaln & pole, i.e., a point, corresponding

to axls Oz. Let the direction of a chord r'rom point 1'1

Fig. T1.

te puint P. Intersect the sphere ot polnt 5, Lhen
spherical dlstance Pis will be zenith dlstunce of second polnt, angle sPiz and an

azimuth of directlon of chord E; from point P, to Pp,. .
Let us asaume, that tu directions of axes of coordinates 0x and 0y polnts x and

y correspond on a sphere, then arcs sx, sy and 82 cn a sphere will be equal to cosines .
directing chords § from point P, to P,. Line xyQ 18 a horizon of point P,. 'Thus,
we constructed geodetic horizontal system of coordinates, in which the position of

points is determined by zenithal distances snd azimuth of directlion, il.e., 2 und A,
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Let us determine cosines directing the chord,

krom triangles Pixs, Piys and Plza we have:

1. &y =cos B,cos 2y — sin B, sin 2, c0s A,y sin By | ros It
2. mp=sinz,sin 4, {:,31)
3. Rep = sin B, cos 2,4 cos B, sin z,,cos A,y cusB, sinB,

1r Ly, 24, and A12 (5:31) ure given then they fully determine iqps My, and Ny pe
In orier to resolve the inverse problem, l,e,, Lo determine Zgns l\j’,, by Ie.j, 11?, LIPS
and Nyns multiply the first expression (%.31, by sin Bi’ the third — by cos B: tind
add, Then, conversely, multiply the first by cos P’i’ and third by gin }?j. From the
third subtract the rirst, dividing the difference by By Lerm by term, Lhen we obe

talns

€082y, = c0s By lyy + ¢in B, n,,, (5.32)
elgd, - Lo By — sy q'_'_"."!_. . ( 5,33}
LT P

Substituting in (5.33) n,, and Ly With the aid of (%.28) by geodetlc coordi-

niLes, we obtain:

‘]
o8 By (Ngrin By~ Nl pin B.):l—— LY. (V.t'vl Byeor i~ Ny cos “ﬂ

clgdu = Nacor Bysini

but.:
»

t.heretore:

g Ay - 9-!‘%5-'-'!- ~3n B, ctgl 4 o (808 = Nouin fy c0s B,

”.Gﬂﬂ.‘n‘
un(h, ) Lot Nathi By e Wy ain g
ctu..--—--—“"*‘ +3inB, g 3 a'-'-—m—'—-hmb..

We designhate:

elge, = M:M.}ﬂna.u.!’_ .

004 B sind
then:

tigAy melga, +¢l..'ﬁ.ﬂ'i-"-|:..":l.‘l'.‘_&¢°.n|.

Nycos 8y 0int
Changing indices 1 to 2, we obtain:

1 Hyuin By - Xyxin
Clghy melnn, 4 o e aial LY N

where:

etca..-'l'-‘ﬂ'-"—!l‘wna.tc%.

ws Byeint
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Formalug (5, 34) and (4,39) determine direct and back wzlmuths of o cherd in
relation to a plune of meridiun qand zenltl of the tirst point 1‘1: ':11,, lg ¢alenluated
. -
hy ¥ nccording to the farmula, wrone derivation is siown below,

rrid coardinates of points l‘j and L) omust satisfy thie equation for the ellipsold:

tor 2,
4
nen o
‘“‘.T"'*"—"“"-

ror ¥,
(LY RN TET N Y .
L o [ *
Subtencting LLrgl Trom Lhe secund, we oblain
- N ..
SO0+ 2050, + 4im,y 4 o2, w0,
Substituting X0 ¥y and %y by own values by geodeile coordlnates we huved

x,m N;coa B,
"A - ol
Ay o (] o) N sin iy,

we PUeads

B4 ) - =2V, (cosB L, +sin B 0y,
fonsldering (1,32), we obtain:
$1 4 ¢ 1n,) = w2V, co83,,,
tlence:
iy e )40y 5, 306)
Let ue deolpnate:
=G el -t (5.31)
theant
LY --,-E,-: . {b.38)

Let us dolLermine the geometric meaning ot ﬁh. From (5,20) 1t follows lLhat when

e, za 90°; in this cass trom (%,31) we £ird that n° » goo B, cos A,, then:
12 i 1
- I—L . ’ y
&L-.- ) th-+e lcosislfgni,»\') - -,-}'-.(l 1y}conr),

1.e,, we obtaln formala (2.29), UOnuequnntly; by Ry it im necessary to undergiand
radius of ‘curvature of normal section at cuvrant point, in this case ut Pae  There=

fors by the formula (5.38) Lt is possible to satisfy the galculation only by u method

of successive upproximuticna., In the Ilrst approximution, it 1s pospibtle to nuturally
150
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Lalees g
--;::- = -—';—I—-ulsln:,, = 1. ?
Slnee Myn = =Pags then, ccnsildering (.37}, we obtaln 2 :
Nycos2,, m Nycos2y,. (.. %) E :
Parther, from osecond formulas (5.28) and {0310 Lt follows thet: ;
Nysing 8in A, 008 B, = — N,sinz,, sin A,cos B, (5,403 i
The direct and 1averse geodetic problems can he resolved by Molodenskly methiod %
by the formulng (5.29), (5.%4) gnd (5.3%). Inverse problem is resolved dirvectly by t i
thesy formulas for significant g, nnd the direct problem, accordlng to method of :
anproximntions, However for Lhe solution of the direct problem these formilas should :
be applied In s comewhat different form.
. Nviding the first of equations (45.28) by the second, we obtaln: ‘
gl = 4 b (5 ’
Multiplylng the second of equaticns (5.28) by (—-‘-:-'!';':J), and third by 3’:: cos B,
and nddlng, we obtuin: ® i
Nosin(B,— B) = Nysin B, cos By + gt s B,—m,,i’;‘l""—:'l- ) (%, 42)
The back mzimuth of a cord is determined by formula (%,35),
: Ry the rurmulas (5.44) nnd (5.42) 1 and AB are determined, but for application : !
§ of these Tormulag in practice it 13 necessary to flrst calculate 245 aprroximations
; by formuln (5,38), The number of approximations is determined depending upon the
i length of » chord, lPor distances § ¢ 100 km it is possible to be limited to only one : j
1 approximation, JYor § , 100 km by two-three or mor-, in order to retain fractlone : i
~ thousnnath ot n second ln‘ézimuths and eight decimal places for 3. !
! S v . Method of chords- in that foém. as proposed by M, S. Molodenskly, fully resolves k%ﬁsg;
‘the probhlem on hand;Abesidea the Jormulas are ohtained in the form of c¢closed comhbina- é
Elonn o' elementary functi?na. For short dlstances these formulas are less convenlent -f
for pructleal celculationt than the formilas of Schreiber, Izotov and Gauss, since E Q

here Lt is necesanry-to deal with a method of approximations and calculation of trig-
'unometrlo finctions of acute angles, As 1t 1s known, the interpolatlon by tables in
these cnees ls very labofgconauming. Geodesists are familiar with this clrcumstance,

Lhetefore they slways prefer to convert from trigonometric functions for acute angles

to angies with the ald of series, Schreiber, Gauss formulas and others are built




Molutensily mevhod s somewhnt greater,

runctlons off acute angles to angles, toen one of the advantages of cnord method Ls

In the work of Chndidate of Technicnl Sclences V, I, Yeremeyev "Formulas and
¥

& lozt. Comenrison shows that the volume of ealenlations In sppllcatieon of precepted

b les ror Culen) ation of tenderlce Coardinates secording to Molodenskiy Method"! nre
A N

Sivin prattical forudlas, and models of gecessary tavles tor the resolution of geo-

detic problems nnd examples of ealceulations.,

»

S 29,  THI INVERCE GEODETIC PROFTEM

- i ‘Phe inverse peodetic problem is the determination of lenglh of geodesic and

aslmaths at st its bterminal polnts by geodetic coordlnutes ol these points,

This problem s compnred to direct is in practice resolved less frequently. I

;
vian be resolved by nny Inverse rormulas of direct problem, but the mostl ralicnal res

vlution lg obtalued by the tormulss with mean argumenta,
Let us rewrite formult (5,26') in such a form:
180 = Ig(N)mscus Ay + v Poon? By oy b 4 2,03 4 2, 18,
gl = lg(2), ssin A sec i, + --:‘ Ein? By v B2 - v, O3 - u'l'_f.i'gw .
IgamiglsinB, + v Bent B, 4 vt~ b1 4 w8 4 2 b,

1y

In these formulas correction terms ﬁvn' '\m and 1m are substltuted correspendingly

hy b, 1 and 1 sin't'*m.
Let us take deslgnations nccording to geodetlc tnbles, [Let:

Ipsccs A, = IgQ,
lgssinA, =1gP,
Alg(scos A) m — v P cosI By vy 08w, BT —u, 4,
aly(ssin a.)-—--%- VOSI B, 4 v, 0 — 2, B9 — B + -ﬁ;— ,
Alga e vy Bes® By o oy 0 = ug B of n [ 4 u B,

5,

With these designations:

)
Q= "-‘l-,:--i- Mg(uuA.)

hP-Ig-—-——ﬂ—“‘;: + alg(ssinAL).

-

). lga*=lghiinB, -+ Alga
2 lgA=gr—iQ }

‘Works of TeNIIGAIK, Ilssue 121, M,, Geodezizdat, 1957, p. 77-112,

(5.43)

(5.431)

thas, 12 however, rom atllizlng the Molodenskly method we convert from trigonometric
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3. lgs=lgP—lgsin A, =1gQ—1gcos 4,
1 . )
A=A ——a (5.044)

AmAL+ .-;-a"i 180°

These formulas are applicable to distances of $00-70¢ km. If, however the dis-
f.inces and nzlimuths are required to be known less precisely, for Instance, 2 distance
with neeunracy up to decimeters, but nzimuths to tenthe of fructlons of o pecond, !hen
Lhese formulus can be applied for distances on the porder of 800-1000 km,

1y in correctlon terms, lhe terms with faclors wy (L =1, 2, 3, «..), are dropped
thiey will become useful for s & 200-250 km,

llowever 1in practice more frequently it ls necessary to resolve problems for
distunces on the order of length of a side of 1st order triangulation. 1In such a

caae correction terms are greatly simpllified and take the form of:

Alg(scasA,)--—.;..P_..:_‘psmngm
Alg(ssinﬂ.)-_:_vb'_ +,p“nn5.'
sigam Lvprs Linconn,
Consequently,

lgo” = lgisirl, 4 Alga”
lglg Ay = lgP —1gQ
IgsmlgP—lgsinA, milgQ—IgcosA, T
A‘-A.—-'-a" (5.35)
]
A,-A_+-;—«"j:l&0‘

Errors ln lg tg Am are composed of errors lg b and 1g L. Let us consider the

problem of accuracy in obtaining azimuths by resolution of inverse problem,

We have
iglgA  mpintga,,
or
Rt A = b = e~ S
whence
A, =alg(tg A Bn
l.e,,

(A Joas = “B“ll.)-’!‘- .

Inasmuch as 1g tg Am is obtained as a difference of logarithms P and Q, then it
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ts wlways possible to ullow thul the srror can be equil to two-three digits of the
lazt signy and in cuse of elght-pl:ce caleculutions two-three diglts of elghuh decimel

pluce, Consegquently, i1 ls possibtle to take:

Algtg 4, =3-'0"",

then
p0~0.9 1,8 or
Al;z_sl 2.1 Q(_L’
20,43 on
Thus, we arrive al oo conclusion thal azimuibs Uron !nverse geodetic problems ut

neeopteg necuracy of caleculations enn be obtalned with aecuracy of up to nl'01,
cxiunples or Lie resolution of inverse geodetic problem by the formulas (5.4%)

"Geodesic ‘‘ables"

and (S.43)- (v, 44) are glven in "Practicum™ (p. 286 and 288) and in
(p, 22 and 25).

In this chapter are presented basic methods of calculation of geadetlc coordi-
nntes, having practical and methodic:l value, IFor application of these methods in
practice 1n USSR tormulcs uand tundamental geodelc tables are developed. With the
presence of these tables geodetlic coordinantes are calculuated very simply and
precisely,

The more practical t'or calculation cf geodetic coordinates of 1st order
triungulation polnts are Scehrelber-Izotov formulas. By simplicity and accursey
these formulas completely answer theoretical and practical requirements for rrecise
anlculatlons of geodetic coordinates or 1st order triungula.ion polnts,

Gauss formulas although they ensure great accuracy and have simpler constructlion,
are nevertheless In thelr application in practize nre somewbat complicated from the
method of approximations. Therefore they shonld be used for control at second hand,
as was already indicated, T[or control of calculatlons of latitude a.:d azlmuth it is
possible to use the fundamental equation of geodesic

NSin A merysindy or (25005 85I A, e (2), cos Bysin A,

In transmission of coordinates to distances on the order of 300-400 km formulas
with mean arguments in combinatlion with Schreiber«lzotov formulag should be used, ,
l.e,, for obtulining coordinates tor first upproximation Schreiber-Icotov formula =2
should be applled. From this resolution of differenres of latltudes, longltudes and
azimuths will be obtained with an accuracy of up to OV01, Arfter that t'or obtuining
unkndwn values with required accuracy it will be sufficient to make two approximatlons,

However, such problems are met comparatlively rarely in practicé, and in every
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indivlidunl case = method of resulutlon, conrorming wlt. 1ie reaulrements o cccuraey
chould te established,

The inverge geouatle problem both for short, and long distances (G:00=700 km) are
tect resolved by the formulas wlth me.n nrguments,

bethod of' resolution ¢f geodetic problems, proposed by Molodenskiy, ylelds to
Sehirieber methods und to mean arguments, Theretore 1t should hardly te ¢ ntioned
tor iLts applicatlon in mass geodetlc csleulations,  Approact of M, O, MHoledens Ly
hing methodical value, innsmuch as he expands our knowledge In an are:s of resolutlon
ot geoduetic problers,

On ealeulation of geodellc coordinates there exisis n extensive zpecinl 1iivr-
sture, Sclentific investigations in thls direction are al8o being conducte: ut
present, In particular, attempt is being made’ to apply Lo resolution or'geodehjc
problems the methods of vector analysis. TFirst investigations in this direction rea
venl advantages of methodical character,

For practical purposes tables of Bulgarian Academician V. K. Khristov should be
published with proper changes and supplements, for nonlogarithmic calzulutlions of
{"eodernic coordinates,

Contemporary scheme for state 1st order triangulation of USSR unticlipates con-
struction of trisngles with sides on an average cf' 20-25 km. In other measure such
distances on Farth'c surface in differences of letitudes, longltudes and azimuths
corresponds to 700"-800"; for calculations of such 1lines with an accuracy of up to
0%0n01 it is sufficlent to apply tables wlth seven decimnl places, Therefore it is
expedient along with elght~place geodetic tables to have seven-place geodetic tables.
They can also be used for educational purposes,

Such tables were composed by the author on a chair of higher geodesy.
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CHAPTER VI

RESOLUTION OF GEODETIC PROBLEMS FOR LONG DISTANCES

§ 30, GENERAL CONSIDERATIONS
In resolution of geodetic problems short, medlum and long distances are
dlstinguished, Usually by short distances are implled lengths of sides of 1st order
trinneulntion mean are lengths of dlagonals of one or several sections of trlansula-
tion und lonp distances are on the order of radius of' the Earth. Referring these
distunces Lo mean radius of the Earth, we obtain numerical characteristics of their

order, Ratio of small distances to radius has an order e2, of mean distances e,

The relation of short distances e2 1s the value of first order, for the mecn, and the

value of the second order.

In derivation of formulas for transmission of coordinates to short distances
power series were used In the preceding chapter, i.e., factorlzatlon in series by
powers of s of the differences of latitudes, longitudes and mzimuths. Such series
quickly converge and give convenient formulas for practical calculations. When
distances, close in length to the radius of the Earth R, or great R, the application
of serles is practically inexpedient, since they converge so slowly that 1t 1g
difficult to establish, which terms must be retalned, and which should be dropped.
Where % > 1 subsequent terms of serles by absolute value can be greater Lhan the
first. In other words, serles by ascending powers of % cannot be used for great
distances in resolution of geodetic problems,

In resolution of geodetic problems for great distances serlies are also used

however they, as & rule, are designed by ascending powers of e2. We already
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encountered tre uze of such serieg {r culcenlation of lenmtns of arc of the merldian,

1

tene gerleg possess properties of jgeodetlic series, They nre slyn changloe and

rapld)y aconversln,.

I tiis and precedlng pirngruphs we consider geodetic prot-lems, in which: = ¢an

Lo wl rent a3 needed,

it tor preodetlc turpets necessliy of resolution of a problem tor very wvreat
distaneer e very rareiy encountered., Transmigs.on of coordinates tor great dlegtances
e oardse, for lagtance, dorin. connection of separnted recdetlc nets of con' inents,
However Loooprelar navipanion and rocket rechnology the necessity ror resolutllon of
. gavls provlens appears 'requenuly, Therelore thie resolutlon of geodetic proilems tor
srent distinces Bus netual practleal ang scelentifle value,

"lrot zeneral guestion, which appears in connection with transmission of
coordinates for prreat distnances, pertains to the uniqueness of solution. The direc:
eodet te problem {8 nlways resolved simply, 1t the difference of the longitudes of
terminile of peodetic lines are less than 180°, This position 1is based on equation
r sla A = ¢, from which it follows that through every point on a spheropid under glven
1zimutn A can pass only one geodeslc., At the given length of line and azlmuth
voordinates of a second point are determined if coordinates of first point are knownh,

The inverse peodetic problem is also resolved single valued, if the shortest
distunce between two given points 1is determined. Uncertainty of resolution uarises
in cases, where the difference in longitudes is equal or is close to 1800.

Ir a bundle of xeodesics was presented passing through polnt Pl, then tor this
ruandle it is possitie to expode an astroidel evolute, whose center coincides with:
point PD. diumetrically opposite Pi’ whiere coordinates PD will be:

By B,
Ly=L,+ 180"
Evolute axes and, consequently, their vertexegs fall onto a parallel and meridixn

or puint PD {Fig. 72). 1In ¥ig, 72 dotted lines depict evolutes of bundles of

reodesics, emanating from points with latltudes O°, 30° and 60°, Geodes;cs are
; deplcted by stralght lines, 0-180° 1ine depicts rotation axis of a spherold and line
’
; 90°-270° depicts the equator,

Outside the evolute of point Pi 4 bundle of geodesics will form a field, in
which through every point of a spheroid passes only one geodesie. From Fig, 72 it
follows that the direct problem 1s resolved by single values for points, located

outside the evolute of point Pl' However slngle value solutions of inverse proi:lem
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Ylhioa) 32 ' W N W B W M W e o are possible on bolh the toundary and
“ » .

» w M w  w
‘:‘J \ o’ on vertexes of the evelate of polnt
1y
4 L SN - Pyo it only the shortest distance
N
o g T 2 o
“ \ P WY retween points ls determined. 1t 1s
w % oy
N PN necessary to poelnt out that these
[ /‘\' P - ”
o\ & UGB g :ases are borderline and each of thex
-'m‘ / N . ' V’ _..
Dy e should be Investigated indlividually.
o ' ‘\ Ve d
X ok Ny » Pub if points I, rall on the ixes of
i
oy i -« the evelute, located In west-east,
L N AN R A A ]
WA NN W N M N AW direction, then there are tun linen
8 2
Fleg. 72. of identical length. This cuse Is

very rare nd for fts resolution a special investigation is reguired. It is possilt:le
Lo determine single values of the solution of inverse geodetic problem by Fig. 72.
§ 31, LENGTH OF ARC OF GEODESIC AND THE DIFFERENCE
OF LONGITUDE3 OF ITS TERMINAL FOINTS

Let us consider on the surface of a spheroid and auxiliary sphere the unit
radius corresponding to elementary righteangle triangles {Fig. 73).

On n spherold (Fig. 73a)

| o
On sphere (Fig. 73b).

MumdocaA .
cosude m dasin A | (6.2)

From (6.1) and (6.2)
(] a8

de MT;'
b oM
i & r

but

48 T
=tV 1<fuwed,

and
fw=matosy.

Therefore

dsmeV 1 —dtcou 4.'. (6.3)
daV 1Aty de
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m oa spherold

.4

ay

Jn & sptere

L)

Dt A pplieriia

dn & sphars

Fouations (-0 3) are the

baslce firsot

eiintiony

order dli'tvrentini

ror obtainig:

- ¢
:;, (“) (b)

rip,

ltongths of sre of o geadesie

and dif'terences of longitudes .

(X4

7S, i, TH,

ol its termina® points,

However Integrals off these dirterentinl equations are not underiaken in elementury

trunct lons,  They must be round by means of factorization of subradlical expression in

Power cerles,

For integration (5.3) we will ac.oaplish the substitution of a vuriable, i.e.,

cAptess u Lu corresponding rormulas hy o,

Let on elllipsold and

ug assume that geodesic s telwern glven polints Pi and ?

"2
corresponding Lo ave of A great clrcle o on an auxillary sphere (Fig. 74) ia glven,

€

e

e
SRy

Let exterd arc s and ¢ to thelr Intersection with the meridisn at elght angle,

'
Tiese polnta of intersection we will deslgnate nccordingly by PP wnd PO. Lottt tudes

0

]
of' polnts i, nnd PO we shail degignate by RO ana Hys A connectlion between them wlll

be determined Ly the well known formula:

llno-Vl-—f'tcB.

L)
Let us deslpnate are Poity on all suxlliary sphere by ao® . g,

V]

’l ]
PP,

1
l)

LI ]
From spheeicul rightennsle Lrinngles P?P PO and 1

cusu,m cusksind, 7|

W h
cos A, o el (90° ~—u ety | )

or:

B

tge = L.

3
-

urther
oin
c——t |
llnu.- Ty

_’lil
From triangle P P PO

sing = sinanin(y 4 o),

oty m |~ sintug 3in? (3 +3). (6.°f)

Substituting (r.7) Inte the tirst of (0.3), we obtaln:
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Y

dima V Uow %4 Pointu sint(y + ¢) dom

a V—l-::'- . ‘,', 14 l:"‘sln'u,siu'(; + a)de '
IVT?!;-O, ;
(LT g ‘
i :
destunadngy %
e sinu, =k, *
we ebibain :
é
‘ dom bV 1NN 4 0 ds (vt :
2
or N
v :; _
smb V1 bt ae. (1K)
' where :
dmghe, do'mds, :
kxpression (0,8) 1s a. elllptic Integral of second typo., ‘Thus, the length of i
are of 1 geodesle 18 an elliptic Integral of mecond type, Oince where B« B, g
virliable ot o' will equal zero, then the lengthe of arces s nre consldered from one ;
weridian, and numely enstward, e
Congequently,
; sw bk, v}, (6:.9)
' where I'(k, of) ure tubulated elllptic integrals of second Lype, ; 4 :
‘ Lt extreme Lalitude By is glven for the geodeale, then (f1,9) glves length of arc ; )
i between pointa wilth latitudes ﬂ1 and HO' But 1f, besldesn BO und Hl' there {8 also
; piven | hade “2' Lhen length of are between polnts Pl and l’:j will be obluined ag o t
diterence of elllptle integrals, l.e., .

) s b(F(k a2)~F (ko)) (r,a1)
Forgula (0.9') can only be used when detalled tables of elliplie lnlegrulu ure
avallable, However the application of tables of elliptic integrals, or integrals of
Legendre, lg huampered by the fact that In these tablea interpolation muat be condueted

by two nrguments, by k nnd by n', frequently with tour differences, Por prartical

culewdntions thia method of calculation of a riquiren considerable work, although

guometrienily 1t is simpler, In highor geodesy the preference ls glven to serles,
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BRI R R

é obtined bty fscrarization Into binomial veries integral expreagsion in Lhe el

AN

- part of Lie sguatien (6,830 Sorles thus obtalned converge very rapldly and depend
on anly one spegament.,

; § A0, R

MESMTHOD FOR RESOLUTTON OF DI RBCY
GRORETIC PROBLEM

For Length of are s In preceding snragraph we oblalped:

5w biv iy A'sln'c'-r.‘u‘.

(li.ﬁ}
Yhy hnved

V! 4 Asins’ ml 4 -1;- sine’ — A anter + ...

USRS ERFIT

e’ = -%-A-- -%co: 2,

sints’ --% ---:— coa e’ 4 -{-cush'.

P T S S T Y T T S R R R B BT R SR I R I I B A

wee obtaln:

VTR = (14 Lot )

) ) () t] i ‘+
( q P*—“—'*)tmh -.i-co“. A
. ‘)Uul"-,' AU

) 3
‘-ln{--‘-.'-—-a-“-f' S
-—‘ —_‘ L 1, 10
‘-‘l' “A-‘-. Ve ( 0)

»
c& e .

in '
Consequantly,

t-bj(ﬁ—!cu!o'—ﬂkmh’ I s o) @,
Making term by term Inbtesratlon by the formulusi

4

{eoﬂn'h' - .} {801 20" e sl Dag) om ain s CUB {2y o+ ¥), (i)

3««4-'4-' - -:-(uln 40 =sinds}) ._.‘.‘,..mzm. (420,

(%)
we obtain i

w tlAc—hlnc&»(ﬁp e} =Coin2enin{dy + 29} (0.11)

.
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vt TR

A

e

ors

XY
]
=

O o

. »: ¢ slnacus(2p ) 4 -ﬁ- pronin 2scus (47 4 2¢). (.17

M

e deglrnate!

ERL L SN IS,

l-%

LA
-t"

c 9
1'70

- i

o

Connegquently,

2P

v -c-:-n}-pslnocm(ﬂp 49) + 78in23¢os (47 +23). (+.1h)

Formutn (u,11) {8 used in resolution of inverse geodetic protlem and formuln

(n, A1) in regolutlon of a darect geodetle problem.

flatli by the rormula (6,11), and by the formuin {0, 14) 1L ls expedlient fo

gntevlate nccording to the meshod of consecutive approximations.

From gecond equntion (G,3)

V 1 —edenty -l--‘;’-cus‘u—-‘.icos‘u-—-t—?r"—--- . r (v 1h) :

prom (1, ?) and (0.4)

TNy T

¢.--:£-'!:¢e. (6.46)

3 sebatleuting (0.45) and {n.40) in (0,3), we obtain: ;

dlode -c'cu'u.(-;;- + '.' eos'u-*;—‘:—-eol‘u + ) ds. (0.47) ;

Bt rrom {(0,7)

‘ ecosty -| -"ﬂ.“.'m. g }‘ ((-, 18)
€0t 1t m | = aintue8int e’ o sinfuysinte’ )

>t

Further

sinte’ w -',---!.-em-'
J (6.19)

[

VI | 1 ,
dints' = . Teu!c’-’-‘cosh

subatituting (6.48) und (0,29) in (6.17), we obtain

dmduaticnu(A'+ B2 +Ccndr'd .« )9, (6,20)

wherel
' S L "“..!!._.——. Ny 3
A-.l.+-—+‘—-ou——‘ ' ‘!n “’ L3 I
(h.?i) v

l‘-‘—"-'.-tin'u.-i- -"-:-sln‘u.--i‘ff-sln‘u.-i- coe o




Integrating (©..20) and tukling into account {u) ond (), we ot taln

= n-—('cus«.{/‘l'o + W sinacos (27 + o) 4 —g— sin2ecus (49 4 23): .

- U

i
op, deslynuating a - e {7+ By, s 'g;_" we Lave finallys

§ = w—cosuy(2's -+ §'sin s cos (23 + ) 4+ sin Do cos (45 + 22)), (P
The flnal term of thils formuli can be d moaximum of i?— sinu

iy and Lta numerical
vialue 1s niways less than 0V0002,

'merefore it ecan bte dropped in further reckoning,

In solution of inverse provlem ( Ls Known, therefore o is determined by a method
vl uappreximations by the formula:

w4 cositg [a'a o 3 sinccun (2 1 o)), (-.03) )
By the formula (v, 23) 1t is nlso expedient to caleculate hy ‘i method of consecutive
npproxlmations,

Formulas (0,14) and (3, 22) are tusic ‘n resolution of stralght geodetic prohlem

by the Hessel method., I1n derivation of these formulas we did not impose any

Limltations on g witn respect to fts length, therefore they nre applicable to ny

distances between polnts on n spheroid,

t [}
ifessel composed tables for vuilues o't lg v, 1g B, 1g v, 1&g @ und 1y [}, where

the tables of vulues lg a, lg 8 and lg y ave composed by argument. that lg k - 1 e

1 ]
gln U and . lg @ and g1 3 are by argument:

"" - k‘ ¥V 0,75 sin Ny

Voi-ome

] 1 1
In our designntions « , B wnd y are functlons of k, Theretore, selecting

1]
g @, 1g B and lg y from tables by argument of 1lg k, it is necessary to arld
conslant value, equal to:

) I
V i-ona
Besldes the shown Bessel tables,} in 4953, V. P, Morczov Doctor «f Technicnt

Sciences composed tables on Dimensions of Krasovskiy Ellipsoid by an argument:
' +
cos2 ug or ein2 AO for a, B, y, @, and B .*®

‘F, V. Besgel, Higher geodesy und method of least squares,

3 Edited by G, V.
Pagratuni. M., Geodezizaat, 41961, p, 272,

2y, p, Morozov. Formulas and tables for resolution of stralght and inverse

gecdetic problems on the surface of earth's ellipsold. (Publieation of Military-
Engineering academy lmeni V. V. Kuybyshev, 1958,)
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L ,.\., ;‘% B

t
roressor N. A, Urmayev made his own tables,® composed for Kk and k  according

to arguments by Bessel they are lntended for nonlogarlithmic calculations and require

R T

parabiolic irterpolution, These tables are very compact, qnd take up only 1 quurter

2 TN

ol' 'L page, but ure somewhat inconvenlent for interpolation. As Bessel tables,

sy ASae

Uriiyev fables are applicable to any reference-ellepsolds,

! t 1
Expruesscions for coefflicients A, G, C nre somewhat simplified if r is expressed

(RYEN

'
by & Ly lformulas:

PRTI W

¢ ] [
) & -'_—-—--"-t’-i et ...

e Vi—a 1 TP
e ‘ -|+thl-?vf e GF"'y
Vi-e

t B

t.hene

3 ':' 'Y
. > 1]
e T e it
'Y 1)

PR
8’-—.—'-tln'u.-:’-2-|ln‘u, . (6.24)

Aw

€
- —’;.—sln U

Consequently, .
i

P S 3
W S ] — sgint
C-‘+" ls'h“""m"' $nY oy

a r ]
¥ = S it Tainty, (6.25) : ;

P
e gl
r= ™ sin'ue
In resolution of direct geodetic problem according to Bessel method it 1s

expedient to hold to the following order,
1, Calculation of reduced latitude of first point by a given geodesic: i

tgu, = 1 —a g8,

1 2. Determination of auxiliary values u, and ® by the formulas in (6.4) and

(6.5),
‘ 3. Calculation of arguments k, k' and selec:ion from Bessel of Urmayev tables

ot 1g u, 1g B, lgy, g o, 1g 8.
4, Calculation of spherical distance o by the formulas (6.14), where for

reduction of quantity of approximatlons the first approximation should be calculated

iIN, A, Urmayev, Spheroidal geodesy. Editorial-Publishing Department VI3, M.,
1955,
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Ly Lhie formulus
()

) ¥,

6y ™

wore VimV T8 cos?B; 15 - Ken Urom peodetle Lnbles tor ["1.
oy,
Y. Resolntlion of wplerical triangle li'il-‘ !‘:\ (Flg. T4b) by Napier's analogles
md Pladlog of AL, vl nnd w,

v, Praazitior trom oo oand ow te D end L Ly tormiilas:

‘gnl- ".."."'v
ize

lmew—cosu,{2's+ 3'sinacos(2¢ 4904 . . )

T regolution ot the direct protlem by Bessel metneod a necesaity arlses for
deterninatlon of quarters for auxiliary values @ and - For that dnta In Table %

can be uged.

Tabtle v § 33, FUORMULAS OF PROFESSOR A. M, VIROVETS
A . . From preceding paragraph it follows that integratlon of
o Py " equations (f:,3) for spherical arec leads to Hessel Caormulas,
": “‘P .“h..
e | o, | e However thls 1s not the only way to integration of thece

equntions. Integratlon can ulso be accompllished Ly reduced
latitude., For that it 18 necessury Lhat do and dw be expressed by du according to
corresporling formulas.

We nave
s mdecos A, (6.2)

cosusin A m= ¢ s COS U, {e.2n)

From (1, ah)

condm Yoiod (i 27)

we
From (uL.2) and (0.27) o
dew BEd (. 28
Vemta—o’ (. 28)
Further
" docosy = desinA. (. 29)
Substituting value of sin A from {6.26) and do from (6.28), we obtain:
oy .
dom -, (r.30)
= T
Replacing do and dw by (6.28) and (6.30) in (6.3), we obtain
- - t %




[] Vl-:-c‘cu'u cos udit
V:ou‘u—t' ' (_,,.51)

gs =

e obtuined difrerentlal equations, 1n whilc! rightt side-function are only u,

Imtegration or these equations lg carrled out by meuns of factorization in serfes:

” [} [
Y 1~ cotyen | = —cotu e ehorsu— —¢ tostu . . . v A0
T . 6’ % (. a2)

Replaclng in (L,31)V T—efcos’u by series (,32) and being limlted by terms with

3
ﬁ". we arrive at the rollowing integrals for ¢ and 1l:

»,
’_“‘ __toredu '!'"f cm'—u:lio_ _
‘Q“'O-C' 2 ‘cu‘;..(l
P

-t [ Studs ) (+.33)
[ ] P, V:oq'u—c'l

&
‘-‘{‘f du _-___ 5 __tosadu
cosu | co ure o } cotu—~ ¢t
-y

.._.edj‘ V“"""" } (6.34)

cosby —

Substituting, .’Tos’u——c’wz these integrals are reduced to tabular form,

We haves

_..,_:_.“_’_'_’.!!'._.--nrcsln Lic,
o3t ¢¥ ]
—totbide -l(slnut—-l'arc!_- -;-}+C.

Vews—a

ot du 1 1 3
PR\ 5 S | — f? 4 e (S —_t e TR
: Vewtu— ¢ n“{4'+ v +3)’} [ PR (£.35)
' X(I-t')'m:sin-!-]-}—c.

.l /‘l ---—ml.(“"")-}-c.
coouleoatu—ct ¢

In (6.35) designations are taken:

twVeotuae, duyia, ,

We designate:

;
¢
t
'

PP PPU S

. f

g {les

PRy "

s




We have ualcoe
siny = Rena
{siny = -Lk'sln 2a
a4

Baing - -;"-k'sin?usin'a

-

GabsLituting wee value of Integrals tn (0L 35) taking inro account (.30, (0 0497)

and (v, 48), we obtalne

s-—a{[l R S T B ALRELE -3:‘)](:.-—-3.’1'
+ H—f'ﬂ —~)+ -IL"(‘(3+ 9:*-5:4)]@;..2:,—.«"2,,) ¢

+ [-Gl—'—r‘(l —_ (!p]Mn ?:,sin' 24— si"'_),‘ \‘irl’:.)} . (6. jQ)
1= “’"""“:H«M et c')](z,—a.)._
_[—;i-'-e‘(l --t'f](sln 22, —sin23,) } (. 50)

T expressions for s and ! terms with e are dropped, which gives an error for

3 less thun 0.1 m and in ¢ less than 0!ood,
Pormula (v, 39) is applied in sclutlon of inverse problem, lor solutlon of Lhe

direct problem it is necessary Lo oltiln from thls rormula (v, - fli)
[ 4

(a=2)" =~ 'T.’ [l + —:—c'u + )+ -—;70'(7-{- 10¢t + n-,] -
""’"[':.‘"" —e)+ "."5“"(7 + 20— 9c‘)] (sin22,—sin 23,) —
—P"l-;:;-f‘(l--t')‘ (sin 22, 5in®x, — sin 21 sin%a,). (. 41)

I'rom (+.3%3) and (-, 54)

tgs -T.!—;-ctgueum.
but
C"H - _g!-!..'
T

t—e¢

where B L8 geodetic latlitude, Lheretore:

“'- ﬂlm.& .
Vi-a
Formula (6.42) is applicable to any point,

S D)

o~~~

For r‘i

(o T X% (rn.421)
Viee
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RIS %

fFor ,,

gy = _clgBycon 4, {oone™m
Vi-o T
Angles Py und Py In nccordance wlih (. 37) nre determined §
'
trom eqruilities: *
R , ;
P, T gl mcetns, | (F0%) 1
tgih = cctya, | A ;
Heometrle values of Y, -12, t51 and “p are shown in lg., 7. :
11 resolution of dlrect problem it ls necessary to determine K, und A.. -
from (6,4) und (L.7€), omitting details or computations, :
R :
tcu--—:‘/I—-t'sin{!
or :
N e oon
gBwm — . "——sinj. (£:.44)
* 3 Lot
Formula (6.44) Is appllcable for any point on a spheroid.
For points P1 and P2 we have: @
Wh, =~ Ll s, ‘
Viee :
¥
gB, = -:-‘ ""“sina. X !
Vice :
hence:
" .
; qa,-ua,lﬁ%. (6,45)
From (6,27)
i
: N S .U 2
“‘.' costy —¢¥ -'+“ A
: or: X
i . ,
; ghA = . {6.46)
costy ot
From {6,46) and (6.36) 1t follows that: . _ N

hence in polnts P1 nnd P2




T ol

P Ap P

S

- e i - it

-

P SR 3

Consequently,

. n -
1gA; = g4, __.:m::, (0 .57)
3 wrodles
s
: A=A 180°.

By the formuias of Professor A, M, Vlrovets straight geodetic problem i3
resolved in the following semience:

o B,
V i—euns,

""‘-cmA,

| €= COs U, we - 5|nA‘

2 lgay =

t—et
3. (@ —2)" mpitgsin(a,—a)coils, +2,) + r{n,—~n).

(2, - \!1) 15 obtalned vy means of consecutlve approximations.

2
4 .'-’I+"I—:I,c
8. g3, mevsuetpa,,
6. tgB,wcosu,ctpa,

Tl (3 =) -} @' cosutg(ag —3,) + r’ £ sint {2, —2,) €05 (3, + 3,),

N 'B - M
8 1y s g8 ns

9. tgA,=mgA, 20

' sina,

In these formulas followlng deslgnatlons are tuken:
--—-'—" .-l-.. _L 4 .
P .{I+‘c'(l+c')+“c‘\7+l0c'+7c‘H .. J
,-_,"H—au—a)-f -'.:‘.4«(7.@ 27— %Y 4. ..
- -p’ .—‘—- ¢ {] = 98 - .
=gt : (6. 48)
1 1
.’-?0‘-}' -T‘—e‘(l-(-t')-]- e .
- "-—’”l-:—" "(l....c.)+ e -l

My wsin 23, 8In%a5 My wesin 23,sinta,

Gilven formulas Ln somcwhat dlfferent way were first obtalned by Professor A, M,
Virovets in 1935.% It they are compared with Hessel lormulag, Lhen Lt Lu possible
to expose Lhe trollowing colneldences:

I 0 1 v (g =12, ),
3 we—(f-B)
3

sy,
4 dnmescotug 7. 0, Mas 90° iy,

b pm—,
6 ewme.

The more essential 1o the fact that serles by Bessel are conatructed by poweis

1

1A, M, Virovets., Resoli'tion of direct gecdetic problem for slgnificant distances
between geodesic points, Journal "Geodssist," No, 4, 1935, p. 1621,
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ol K5 e ein® Ly whereas by A, M, Viravets by powers of %, fut this elroumstance

g pasee Poarlimental than practical value, sinee the Jdit'ference in ceriea 1o Feyvornd

th:e limits of accuracy l'or unknown values, which is consldered In caleculatlions,

: I'or cnleulation by the formulas of A, M, Virovets detalled tables and instriuctions g
were cappased by the author In 19%%.  Tables contaln nitural mesning of valueg %, P, ;
(), q‘, r' and m. Instructlons and tables are published in works of TsNITGATK, {ssue é
' Ho, i, I the same text resolutlon of Inverse preblem which will be discassed fn ' ?
% &7 wan developed, >
lnvestigations in recent years, among them those of an author show that Igy é
applle stion of formulus of A, M, Virovels and tables for them Lt ls expedient Lo ?
, make o opumber of changes for the purpose of excluding negatlve ares us, ror Instance, ;
i - (1, ~ ), = (B, - B,), 1.e., a formula should be transformed for them, This - ?
requirement lends to another composition of formulas. t 1s possible that {1t is !
better 1o have tables by argument cos Uy- These problems require speclal lnvestipas '
tion with which the author 1s occupled at present, ;
o iiimple comparison of formulas of Besael and A, M, Virovets lends to a thought !
{

that. they are lnvariants, since In basis of thelr derivatlon fundamental equation of
' peodesle 18 nsgumed, It 1a neceasary to consider that other varianta of theoe
formulns are possible, which will be obtalned by Integration of buslec dif'terentinl
equations (G.3) by means of replacement of a varlable, In the followlng puragraph
resultn of Investigations are presented of certnin foreign geodesints concerning

thls questlon,

{i § 34, LEVALLOIS-DUPUY METHOD ‘
T Above we hud:
| drmal/ 1=reutuds | (5.5 |
——ee . Gl
dn)y T=dcdudw % 2

Replncing e? by e'2 in the formula:

we obtain:

audVi4e sinhde

From triangle EPP, (Fig. 76)

tnsesineen A, (6.49)




tuerelore:
————n
ds-bVl-{-e"tm'r‘,sln'oda. (- )
dere o Jo on spherleal distmee trom equitor o current.
polnt on auxililary sphere along the arc of grent circls,

vorresponaing Lo peadesie on o nogpherolds

" .
rquat.r ]/ e’ co A, sin®e w | 4 5-'» cus'A.\h.-'z-—fi- cos Agsinte 4

+-'~"—¢"cos‘A.sln‘o— .

ure
() :
- . en‘ ) ‘D ' ‘.
. N ) ‘é(l T?tos'ﬁ.sln'a- —.-cos'A.sln‘: + 1;«0 coo‘A.aln‘a) d:}
) Lel ug deslgnnte:
l"ﬂh'A.- *..
.
L 5 tinfedomJ,
?
[ ]
[ ]
—:-jsln‘o dow Jg,
¢
. el
-FJIM'G dewd,
Congrgquent. ly,
LT T VAR VA TX W A S ()

: whiepe

.‘J‘.;}J.l"‘d. ('.-2. 4, IH. « .oy ‘-'. ‘.6' v . l).
(]

,.oare Wallace fntegealy,

dow dys
,-\.l:’. .'\.l“ and Ad are ditferences off Lhese Integeala,

Tabley of Vullace inlegrale were compused und are used in Frange, 'They nee
simpler than Lagondre tubles of elliptic integrale, since they nre composed on one
argumcnt,  Tubles enable to obtaln correctlon termp of formula (6,50) with preclolon

of ON0VOL. 1n USHK thwse Lubles have not boen used up L1l now,

W

i j integrala Foetn' ode (now 1, 20 5 4.0) can e expresaed by rormiluns
B 1

# i g _ alTha




R
.‘ siffe dy o -;—(:,-u,)—- -%— sin (3, = o )cus{s, 4 9,)

L
i

3 snfa ds = -:- {39 —9,)— —;— sin (3, — g)cos (3, 4+ 9))
+ -:i- aln 2{3, —~ 0,}co12(z, |- 9) }
Mepelore

:' « As~—Bsinocus (29, + o) : Crin23con {45, +20).

oo

Fovaly (1,60) ean be uaed in regolution of the Inverse prohilem,
A betore we wlll degipnnted

2L "B e £
..‘l’-' ‘l1 ' A‘

b

e trom (60,52)

= "l" {o=Puinecca(2e, 4 o) & sin2acor{d o 4a)).

In other wor 149, we aprived ol lwpgel formula,

From (1.929), replaeing:

llﬂA- Mc
e
o S 4
o'y
and dealgnatingt
U VT:c'cm.'u '

we obtuln

4,
} {8 A,
n-lhj(! ~v‘-’-)+:.';;— de,
4 .

Pt
1] 1
l—-‘-“-- -}-o‘co.'u + Te'col'u + -'TO'GUI'U.

und
€0y m |« g0V A, inde,

(+.01)

{(5.08)

(. Ry

&5

e

R s

o oo e e e

o

JRTRpRY




% - REIFIRETY TSI, MR \Ibb e cmmmmev s 11015 0 e mams + 1 s

thererore
9, 6y o,
low—sin A.‘ I Nde— B cot A Ssln'ad o4 €' cov'A S sintada ] )
L L L
ur, accompllaring term by term integration, we obtaln:
I-----tlnﬁ.{ A"--ll't‘u&'A..\J.i-C'c«»s‘A,.\J‘}. (1 1)

Here

SICIN S
Amdb T4

i’
Fmst S,
Cc. 2,

[

" "
Conglderinge rormer degtpnation k' -« ¢ " vcap' ,'0' we have:

lwmuwninA (Ae BN AL 4 ChVA L, (.00t
vhere
B L, € £
Formulas (.50) nnd (000 0) nee obtained Inoaueh o rorm by Freneh pgeodening
LevalToty sod Dupay [27.70 0 Here, s compared o leggel and A, M, Vipovels Foprmnt g,
aonew Lrem Lo the o coduction of Wallnoe bnvegrala,  With nvalinbiiley ol Wallr e

tableg of Inteprala, this method ¢qan be used on o par with Resgel and Virovetn

metnody,

§ 50, HMIMERT MitUob

CErom oprecediigg secount bLo g clenr that geprlos for g and 1 oby Beanel and)

Levaliofa~bupuy [?) work on nacending powern of k w v' ein u, 0! coy l\o.
Iheraerore from the polnt of view of convergense theie svrlen ars equivalend,

Nelmert, for acceleraticon of convergsanco of serlem and convenlence ol' solution
of' Inverge proolem tntroduced pnrameteor k1 tn@tear of k, which he determined Loaw
t'olluwing manner,

Lel uy ussume thn'

tgew b, (in 1)
thet

'ﬂ‘..;..-‘.. ("-"7.)

lgeodetlc Bulletin, No, 48, 1959, p, 30-38,
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ort

X

wlpy lpp g 1 R ..
b B GREL g
{
With Helmeet, pruraseter the differential of nre of peadesle rrom (0, 4) will 1nke i
Voot ot !
W
Inteprl o lenptbg wil] be .;
L4 ’
I-BK.E:—;?- ,/an{-}amcuﬂh' de’, (., 00) g
-, w2 %
' "
WLk peapoel o geometede value off o 4L should be noted thnt the o o cf the {
preat cirede an oo gphere and 4 geoadeste on an elllpgotd have two charactoplst]e
pointg, palnt of interpection wlith ogquntor, N
1
On K aphop iy M oA uphoro 1n which the azlmuth is equal to Ao' atid ;
point of Intersoction with merldian, where x
nzimuth g equnl Lo G0t the Later one han
magdman batd tade nlong the entien o.tent of i
nre, :
In our deslgnationn Lhe maximum
atltudes Uy dre on a sphere, and Py looon N
: Flg, 1T, E :
, o TT n spherold, . R
» 1
¢ 1
{ Are v, ne in lessel method, la counted from point 'y (Fig., 774 and b), i
Tern by Lerem Integreation factorlzed in binomial sevlen of subintegral expreanion
. (1:9)) glvem
|
: H-—I o \
,...........{e...(.n,- ).lna.'--“-q.mw+
L] o
+wtg.moc'+ . ’ (6. 60)
Equation (6,00) gives distance of point b, from point Py along the geodealc.

18 we npply (6,00) Lo two points of geudesic, we will find the shortest distnnce

between Lhem, the geodessc are, Leaving tssighntion s for this urc, we obtauin by

(G600

S ..Lt' '

Amd .-—-1-- LA (l.——-ﬂ)em\!o,, sin ---k[mh,,nlnh-l-
+--lf¢u6'.m|30l (tifar)

s bvl!\'a!




i LI A o (g © rm e

where;

Vo ‘
Og = —~{o, ¢ .
L] ,(l-’ l) . (".!.:)

S (0;—9))

In recolutlon of the 2lirect problem o e wtelly unknown,  Helmert means or
artirielal tparstormat lans with tne help (:,00) determinea o, Sehematienlly thin
dertvatlorn congiats b Lhe Following,

Wil decipnnte:

: ,;....!d'_:I!nL_
m+—‘-n')

N - .,- —-&L—".
"l 4 ....‘I)

consequently,

. .'"—l .——L—. 1= v
’(Hv—‘n)

For eurrent polht o peudesle Helmert rlndg:
-s,-—‘-—-l.—u- 3 sin 2g; r-—k.uinh,— e

t 1 t
whie t'ne " sd nyoare coanted from pelots '(‘ a1 o Taktng ditferencen off o ol

|
. 1

"1'-1‘ wu obtaln spherical diatunce between poluts l‘i and 2*;,.

T T ) -u'—(i.»%ﬁf)t:on’a;. sins' + -%*gmu;nnm'. (.0
He g

‘.'-’;_.; ) ((,'(,;\i)
s ..-.L(l;+l:)
2

Foemals (L Y Ta wed for resolutlon of direet peadetie problens whoeve, np ey

L]
e aeen Prom (0,00), tfor the determination of ¢ the method of approximations s not

’ roqul rei,
. . A For dittarences of longitudeo hy means of substitutlon of varinbles u and w
from (0, 3) we ohtaing
— con (1— —=1 Y1 Em«wu
#udi—conu (1) T LLbEmedy (0, 613)
. : Omitting detalls of computntlions of iategration, from (6,63) for 1 with Helmert

pnaranmeter we havet
, } ,
fomd e l'emu.ulq-n--l: ,-—-: Ae =

..-%-é,mlo,’,llnc‘-{- -:-h[colh.‘llnh‘). {f:, ()

In (6.064) following ls tnkem




e YR T LR X ;
u'ue;-e;: l-l‘-—ll. ’1‘
®
deaquence ot resolution of Lhe dirvect problem necording Lo iielomert wmethod In ;
i
approximitely the sume as Lhe Ressel moeihod, {
1. Calenlation of o plven latitade by the rormala: \
=Y 1 ys,
t 3
O Onleulation of suxildiary valuesg Ugr 9q uhd }\1 Trom solutlon of sphoriceal -
) o
Lryangmle I':)i"l'i by the termulao: ¥
. cos A, E
€, Wl e
'. i ".‘ '
cosugmcosu, sin 4, } . (1 08) 8
U1
i et
‘l L= ©0b iy ’
For control, the followlny formuilas should be used:
con,-.'.l!l_ ’
:‘.. GAGELE
dlouy = 2
e, |
1 RS
4, Calculation of o by the formuln (G,62), Where this ealculatton s
vonducted in the following sequence, )
1 i
Firat a Lls obtalned 1n degrees by the formula: ;
"ne 4 ':
(s)" W, ! g
Lhent :
2(8)° = 2(e))" + F, sin 29} + P sinde]. !
§
Hepe: . .
; i
! ‘t:‘l"- ! {
} \ |+—£— it \
’ P.‘-."' ’ P.-~— ;’.
! Y ®
f '
' t ' ]
Hnving 8 and 8y, We obtain By and By
' After that apply formula (6.62) 1s used in the torm:

O o 8 4 Qrn R siny' o Q,conds, sin2s’ 4. Q, corBs) sih 3s';

coefficlente @, Q, Q3 are squal:




Contteients E,, Poos h‘.]. Q, md Goore taken tfrom the takles,! Tables for X

1
nre composed foroeacls elitpsold wd P, "‘\1' O, nngd (215 are Laken ag tanetionn ot F’l'
Corpteareemt fy, with avallability of tuble tor El Lables tor "‘.’."' lv‘1, '37:7) and G, nre
applienlle for qy reference-ellipsold,
- 4, <ualeculatlion of latitwile B, and btack azimuth Ag.
1 ]
Arter Plndlnge o caleulnte o bty the formuln:
0y =9, 4 2",

I e rfor tne determined with contrel:

e, (1)

H,  Caleulatlon of differences of longiuudes by the farmula (6,64), tor
Lpractical applieattfon thls formiln s recommended Lo be vransformed thug:
b= Ao cosuy (R 8" we R, con 23] sin 3" + Ry cosdagsin2s’ -, CURIARD)

where!

P [ T

Rem §(4nm =t

R.-%?'L , (6.67)
a®

=g

Coeft'lcients Ri’ R? and R} are taken rrom tables and also by argument Fi. By the
tormuln (6.64') 1 1s obtrined in degree mensure,

In reaolutlon ol geodetic problem difficultles arise In determinuntion of the
slgn and quarters tor auxiliary values A and a'. Table € glves orlentation ftor

determinution of quarters,

igshown tnbles are compossd . dimensions of layford allipsnid by ‘lermun geodesls
Baudmuller (?) und are found in a8 work on 'Formulas and tables for calculution of |
direet and inverse geodetlic problems for long distunces tor Internutlonal elllpsold,

Munieh, 1955,

1
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Melhods preser.ed in preceding paragraphs do not exhoust a1l posaibllitien far

regolulion of problem by equations (©.3). They dlf'fer essentinlly by a method of
intepration of equiations (v 3) and modiiieation of series for ¢ and 1 hy mesnn cf

intraducticr: of' parsmeters k or k,. Differences in methods of Bessel, A, M, Viravets,

Levillole=Dupuy (7) and lielmert with respect to accurncy and speed of resolutlon can
appenr imperceptible, if all possibilities for simplififcatlen of ealeulntions, Laking
Into neecount pecullariries and structure of' formulas are fully used.

Ori a busls of consldered in this chapter methods there is Clalraut's (?) egquution
and enaulng from Lt pogltion, that for every geodesic on a spherold there correspends
o deflnlte are of great clrele on u sphere of arbitreary rodiuz and eorrvesponding
polnts ol thls arcs of Jatitude are equal to reduced latltudes, and azimuths 1o
ndimaths of peodesics.

4ot about, the presentation of un spheroid on a sphere, as it 1s incorrectly treated
by certuln suthors, and all Lhe more 8o not about spherical resolutlon of o problem,
but, about » very ilmportant interpretation of peometric propertlies of peodeslc on u
spheroid, The ahiown property of geodesle leads to the fact that, LI one were to
connecl two palrs of mutually corresponding polnts on n spherold and n sphere with
northern poles, a mutually corresponding geodetic and spherlenl polar triongles wili
be obtained, which will be right-anrgle, when azimuth in one of a palr of polnts 1s
equul to 90°,

From the point of view of rapidity of convergence of series and uniformity of
regolution direect and inverge geodetic problems by Helmert method should he glven

preference 40 one before the other, if sufficlently detalled tables for coefficlenls

Fi, Par Ggs Qs Qye Rys Ry und Ky ure available,

§ 36, INVERSE GEODETIC PROBLEM

Transmlssion of geodetic coordinztes for distances of thousand kilometers up

t111 now ie used in world practice of geodet.e work only in parilcular problems,

~181i.

In this interpretation, fTirst determined by Ressel, Lhe mu ter
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Thererore retiods of resolqtion of i probles preceated bnopreceatinge e eaphs
foave o e oonly theermctioad valae, widen allows leeper stody ol meometry ol the
Faprtore o terrectreial rpberodd,

Hovwever resohution of Inverse geodetie problen o dicterminst ion off Jdlstanee ol
sbmnths ecordlng to coordlnntes of twe pointa, has both theoretleal, md practicen
value,  developnent of rockel Lechnology, radar navipgation, inteenatlonnt broadenstinge
ancd b nev e bone pespibren deternino U bon o b suaees bolween very dlstat poin s
of captt e onetiee el dlrections belween thess jolnts,  Ttoin Leie, o thege
rodui v nd 5 et be o sallslied 1y elhivdo of upproximation, but o Lime, when o single
world geodet e e Wil e erenbed, ey et pegoliutions of this praobhlem will be necded,

FOr the tast 18-1% years In USSR owd abrosed steonlfleant selentd Ple fnvestipations
wers copduceted and pubtished o serieg of works In an aren of regelution ot thin
protiess o spheroldnl peodeny,  In these works, part of which will be conasbdered
Pirtier, new methols o pesolntion of Lhe problem were ofleped, Lhey were Invest]yned
and oevadunted on the basly of contemporary requirements tor ldeas aud methody, by
the prentest peodestosls o the pasl century,

o connee fone with development of compputer Lechnolopy o neeesolly appesreld 1
creation o methods, usetul tror spplication of cleetronleecomputers, In this cave
the more Important 1o not quantlily arlthseticont settons, but sonvenlence of
progrataing, Lo obther woprds, i apherotast wed vonecessily woge for creatlon or
met oda and Foarmulan ror reactutbon of pectett peoblems wlith the holp of new meang
oft computer technolopy,  CIiic olindnntes neeccalty for apectal peodete tablen, nl)
resolation o reduced to compesliion off progream for Lhe computer,

Put, of courge, Prem thia b dees not follow that 1L s yel pecessary Lo
completely depart frem former approaches,  Well developed rformer methods will be

used ror n long tlwe and o certaln prrtlenlar easey can be the most praellenl,

§ 37, INVERSE PROBLEM BY 'PHM BESSEL AND A, M, VIROVEDS FORMULAG
Regs: 1 did not leave any lnstructions for resolutlon of inverse peodetic
problem, ‘Th2 method ot resolullon of geodetic problem was developed by lessel under
the followlng clrcumstances, Iun 1:8%1-1834 Beggel and General 1, Yu, Ruyer (%) carpled
out Prugslan measurements between Trunta and Memel, whooe charnctertstic peealjarity
was in the tset thuat Lt wng cenducted indirectly in regard Lo the merldlan,  Fesiel
posed a problem; whereby the length of geodesle, astronomloal uzlmuth and lalltude

of Inltinl point he was Lo culculate geodesic latitude und nzimuth ol terminal ot

-182a
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h(E
L cA
the are (Memel') and to compare the e:xdenlated volues with those g
obtatned for that point Ly nstronomical observetiong, of jatltade -
", g and asimuth,  lrom differences of thege valwers he oblalned correcttion {
for semtaxis ot ellipsold and compression, -?
n tiven beiow 18 a method which Ls o combination o ditferent rf
Vig, 7R, proposnls for appllcation ot MHessel formulue to rescolutlion of 1
Inverse geodetle problem, l
The glmplest way o resolutlion of a piven problem (o composed of tie tollowing &
netiong:
) trom miven peodetle 1atitude l&ﬁ and Hp convert Lo correspondingg redaeed ¥
Intituden: _
) Ltaking in the flyat approximation w = ¢, regolve auxlllury spherlenl telangle
I‘;l"i‘:, (le. 75) mand determine approximnte values 0y “:l”
with these 04 and !\10 agnln calculate Wy by the formuln _.
oy w48’ e, CO8U, E
Ohtrdnlng Wy, repeat. resolullon ot trlangle P:;_l."l’; and 'lnd more exnct value af ;
Aond Ay Having latest values, caleulate anew the o by nocomplete formils
o [ 4 208 (0 4 P2l 2008 (23 & 1)), (i, 0%) \
!

such approximations depending upon required accuracy of resolutlon are made

severnl (imes, but not more thun three, After obtaining precise values u, A1. Ap,
i

U, and @ by the formala (6,31), calculute 8, By this method unknown valuesn can be

obtnlned practically with any degree of accurecy.
titven scheme of resolution of inverss problem {5 applieable for formulns of

R

Professor A, M, Virovets,

i From Lriangles P,P' Py und Pob P (Fig, 75) we have:

‘“p. ."‘ g iy elg ito, "

cosfly « tQuycty i,

ixcluding from these tormulas cotangent u, snd constiiuting derivative

proportion, we obtnint

K . ...m.h%h...c‘ ll""b Jin uy & o) (0, 68)

sin(vy -0)’ .
: Formula (6,68) can be used with the method of approximations., 1n the first
approximation ﬁe - ﬂi = «l, let us find firet approximatien for B, &nd t."e and then

by (a) and (b) deiermine Usye With these values Bi' 52 nnd u, culeulute second

-183-
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approximat fon

By—By ol =g (4, ~ 3 ) C5uy
.3 whiere

"ﬂ. L5 tmu.ctg pl'
g e, ~ coruyclgh,,
8y u By 4 Ba—0).

Appraxiot tons depend i apon rogad cement s Cor nceearaey ot resolution are

Yepeated e 1 ey,

Arfter obt nfne Pinal valaen e e P el or unkiowh 8 Ai ateh A e
calesdbbe Ly the Pormadaee
i - .-%-((1,—-1,)—-qgln(a,—-:,)cus(a.+:,i—l(m.-m.)}. {r.imng

Ig A, » clgu,cosec s,
1g Ay o= Clguycosec sy | . {eicr)
A, - A; o 180°

Accoriding to Helmert method Lnverse problem Lo resolved In the same gequence,
fano by Lhe beasel and A M, Virovers formulng,

1o Markdinge on oo gmalb=sen e map by cootdingten the glven polnts wita acearaey

1
of up to one degrec or nore exsc Lby o remove from thits o mnp Lhe value ", nntd o the
spterieal dlotanes between polots,
Do Obtatn leal spproximation by thege values
. "
by da- 0 g »; cos i, )
further ealeulste value M oand |,
gzl o) l;nungu, L) (1)
] iln(u.—-u.) .
LTI
. €= cak ” i,
e cose’ uny
; (halryey . (7))
i oin &
s .l
s e, = FTY
(] L)
o my -y
L. Having vilue of polnt 2, c¢alenlate \ by complete formuln
by o b conut (R — Ry con o), sin e’ + R, con dulysin 2], (.74)

Culeulation by the tformula (6,73) la repsated 1t great accuravy of resolallon
la required. .owever in overwhelming mnjority ob enses thia upproximation In
suf'ficlent

4, Huving \, calculute unknown A1. A? and ¢ by the tormulns

o ra ——
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;
!lv

cI(A. =—tgugsine,,
e A, ~ fgu,sine;,
Lo Qeco02e s8N0 + P, cosde sin ',

wn g

Wl vheed

T B RERA -,

)
’ ¥
Batrad o approximatlons e the most anlvercal fn resola! Ton o fnyerse poret e
Foo Tonge distemecsy 1 g enny Lo Unlt gquantity of approximat fone, congbdeetng o
blaere Wb d0,000 ki PLrst appraxlontdon (0 - ) glves crror s beds than © o kK, ._
3
seeaied ap Lo dooom and thlird to 0,8 m, e othier wards, third approxtiasg ton o :
practier 1o rully cufticient tor precice reaoluticons,  In approximntion eateqlationr 2
"
HEode aaf'felent ta do Just the second approximatlon,
§ a8, METHODS OF REDNDCTION ob QUANTITY 0 AUPROXIMATI N,
As cin o be geen from the above, in resolution of Inverte provlem the malp netop
Lo Minding A o difference of longltudes on auxiliary sphere, Far reducetion of
approximations In determination of A both graphlic, and anniytle methodn ca, be ageld, !
From graphic method, tleat off all use of mapn of differen aentes Lo recommended :
ot whlein the Siven polnts are marked by coordinatea,  On theae maps can be Pooted .
!

approximite vialued of a, Ao A?. nnd, consequently, u, it s then pounit-le to procesd
Lnimeddately with ealeulution off gecond approximation,
It 138 posgihle nlso Lo uae the followlng graphie method,

On Lracing paper, at determined scale draw a bundle of geadeslcon und 1lnen :

? W connty on the game scale on uguul deafting paper draw n praticule, 0n \he
graticule place two given points,  For determination of Uy and n; pul. geatleule on

; o beanelng puper In puch a manner that Image of equators colnecldea, After Lint

* determine approximately the pogltion of the geodesle, pansing through the Lwo plven

polnts, snd thus tind uo,_(oi)o. (o;)O and aé. By these duta upproximationn hy Lhe

. formuln (0,73) are cnrried out,
Annlytic methods of ncceleration of approximntiona are more univeron! and
v pocgen: pgreant possibllities, Let us consider asome of them,
,i We will convert gecond aquation (A, 3), replacing in it the pedacen 1t tide

o' geoilesle,

We have:




de = dIV, : (oo

- Wl

‘E . Ve Vl o+ ¢tenr 8,

Arrdyime teodnteprag {5040 Carraegte breo P abant menn ovaue

‘ vl uee tion, wo obihaging
w- iV, (6,700)
Vet ‘.-’m e Teoebre b b Yoot Iy 1 s posatble to approxtmetely fukae
Phons ey
. oo VTG, 8-t
v
o 1 —— onama)
l) V. [ -;-(V. +V.), VI‘. - V 1 4 ,"cos'BM.
- vu H 4
‘) l"'i'(v|+.v'.+v|).
Then we wil] cbnatn thves cqnlvalent approginat e formelng for enlenlallon of
HECrrene e o Yol edes on auxi Hlary aplaspes
l'-”; .
o wiVa ). (eo7)
.IH ‘w:
Formalan (CU7TRY ape o app et e e ataneen s Lhie opdep of Jame oo o, bor
Lhiviie dlatanees bhey glve good Pl apporoxtmatston, whieh for vorredponding regnlpos
-
: Bents rar aeeneaey of ealealat fonn la tally anrededent,  Fop pped:
4 dlataneer these Popmalag see applieable cor ealeulatlon of ) et
5 oy aporaxlmntion,
. ®, .‘c‘ . 4
T formula (0004 deep the tepre wit) o
.. L]
: 'y oWty k.-'i-mu.llno'. {r71)

lg, T, where!

Lod .' * T [}

.! une' » (‘ P )
]

G o= upproximats value o

From trtangle 10 Py (Mg, )

- L) LI Y]
sin A, e «su.-—m-,—l-.

Further

CObily ™ “iul"n‘|

-
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emtan m ot minn o o e o e

]

o
COIU.\-&‘L"“&.J;E?—!-'. (.7 <
e o :
vabstitutiug (GoPr) for (0 7%, wo ohlatn é
. -
LAY Y A !f €Obuy CO* iy sin ], (oL :
‘ i
Vo ie teal b e valuen, ptven boe Table ’é
Pal-1e 7
[ Y [ [ M & L 14 LS i
. 0 1,00 [ 1.2 to* K] <
10 1,m n 1,0 1% 2.4¢ 5
» L [ ] 1,4 1 2.9 ’
» ‘.M 1,87 1an L.
% JA 100 nn 184 “» H
& L4 :
Avoean beosteen Prom Table fy for dintances up Lo twiocacue Jom o aupelyg approximet e .
coleulationg coetfleient ko1, For dlgtmees: :
from 6000 to 8000 X kyos 1,5, ;
¢ 6000 » 10000 » A 20, |
¢ 10000 » 12000 » A w25, _ i
« J2000 » 13000 » &,~ 3V, : i
Sphierlent dlatanee s for detorinatlon of g omudgl be known very approztestely, |
with aevuracy up ta 1"1. for which 1L s possttle Lo une a map, L
For digtanoes up Lo GO0 km formila (G78H) can be sdmplitivd by means or ;
. 9]
teplncement. o given lattiude by peodesies aad Lo tnke o e Mo (here a = compreasion
of ol lipsold) ;
oV o {4 aninteos Bycos B,, (6, TE") )
whoere i
}
wa L e,
[RE%
oWV {4 667" hsinicos B, cus B, (ira")
A

In Table 8 dntn ape glven, which presents the nccuraey of formulna (G.‘f{,) and

(o8,

Tible 8
N - % . , - - oY “asoumie -
’ Ay 'Y 031 rmav [Ty '8)° H'op* | —-a2'11°3°
SHHE AR
1o | 1 uﬁi& et RE LRI AR AL
-187.
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From this tuble it follows that formula (6,78') glves better first approximation,

Therefore it should be used for resolution of inverse problem for long distances,

eopecislly durlng approxim.tlion calculations,
! t

Hluving obtalned w, 3t 1is possible to calculate Ai’ A,d and o by di.!:rent
groups or tormulas,
- First group of trormulsas:
N el@ A, == tguy cos uy cosec w —sinu clg w
clg Ay > sinu, elg v — Ig &, cos uycosec w
c‘gg;-g.ﬂ‘.

tgn . (6.79)

___:__.E Ceme e e coe .. - - “‘;
. otz - L TN

decend group of' formulas:

Xy = COS N, $iN Uy~ sinu, Cos nycos @
Xy = €OS Uy sin uy cos w — sinw, cosu,
#; = cosy,sine
Yy~ COSu Sinw
gA, = ) (£,80)

L
YAy = o
2y N
sino s A - ‘—-h:—
cos A, unA,

Third group of formulas:

vt u)
A - Uyl

Aus (A, Ayt 1807)
a4 "(‘l""li’ lm

» [ Y]
gA_ =tg ?com—’—cou_

Rt s L TR N

. (6.81)

R

Ama,+ 2 ‘ .
In rormulas (6.79) unknown values are determined mainly through tangents or
‘\éotangontu that ensures least eri.r during interpolaiian of tables of trigonometric
tfunctions, Formulas (0.80) ahould not be used when o, iz close to 40°,  Formulus

(6,81) are convenient for logarithmic calculations.
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t ' 1
Huknown distince between glven points Pi and "4 atter oblatining o, i arnd o
: 2

can be c¢nloulated by the Helmert formulas

5w 0 Q,005(28) 4 O)sins’ 4 Pyeus ({a) + 25')sin 20"
4 Qg 08 (G7] + 32°)sin 3o,

Vilues (\‘,u, l‘? and Q5 are Liaken from the tulles by srgument for F'j

- During recent years scientific investigations appeared, _di;‘ected Lowarq_s_ o
gubstitution of approximation method by finding A by a stralght line resolutlon of
the problem,

dJehematicully thls way of resolution of the problem cun be c.own in Lhe
rollowling manner,

Let us assume that

A=l 4x,
where:
T (g0}
and:
o = (0, 4,),
0w oty )
Consequently, l
i
X o [ {uy, ttyy 1), |=
but !
oy = o1, (12, A,)
'I‘herefo__re:
X - '!(“lo“l' Al)‘
but: -
Ay = Ay, 4y d),
ors
. Ay me Ayl 0y, 14 x)
Thus, finally!
‘"’.«I-“‘-"“"-

= PR g oFad - 2 KBS AR
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American geodesist ¥, Soduano! by meuns of very complicaiea nnalytice transtorma-
tions manuged to obtaln a rormula for A, which does nol rxquilre method of
npproximations.  Soduho formulas are still very compllicated rov coleulatlons, they
resolve nuestion only in principle, but tor praetical «<nleulations nre not useral,

In spite of abundance of printea matter con resolutlon of geodetlc problems tor
long distances, this problem cannot be consldered finnlly solved. Inasmuch as ut
present, Lime mainly npproximste solutions ot problem are reguired, then dependiny
upon regulrements tor accuracy different methuds can be offered, uvasically leaning
on atrie! methoda of resolution, the mniin ores sre presented in this chapter,
Mithematlcal and geodetlc bases of resolution of these problems are 'ounded on Hegsel
mothods, -compared o them remuining proposals are only modificetions, essentlally
simpl!fying calculation and lmproving convergence of used serles,

Numericeal examples of' resclution of geodetic problems, direct and inverse, are
given nccording Lo Bessel method on p. 292-296 cf "Practicum on higher geodesy”
and by the formulas of Profussor A. M, Virovets on p, 20-29 Issue 23 Works of

TsN11GALK,

'G. V. Bugratunl. Revlew of methods of resolution of inverse geodetic problem
ror long distances trom moterial of Ceneral Assembly ot Internationul Geodetic and
Geophyslcal Unlon, Tzvaatiya MRO, 1960, No, 4.
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CHAPTER VII : - e e

IMAGE OF A TERRESTRIAL SPHEROID ON 3 SPHERE

et nror <1 ark {HER

§ 39. GENERAL BASES OF IMAGE OF CNE SURFACE ON ANJTHER

To deplet one surface on another means finding a law, in accordunce with which

each polnt of one surface should correspond to s fixed point on ainther surface,
In other words, in projecting surfuces an established point must contorm .o bLolh
surtraces, v

et us nssume that coordinates of polnts of flrst surface are expressed by

] t
parameters u and v, and second — by u and v , then

& = fy{w9) ‘
e o) (7.2)

Since the image should satisfy definite geometrie conditions, then function

N R ]

fi and f? cannot be arbitrary, thelr form is determined by assignment of conditions

to the imnge,

P e A R T T

From equations {7.1)

N-%“*%*' (7.2)
‘f-%E;‘li-%E:db ) P ‘
Let. us tind geometric values of partial derivatives (7.2), We will nnt dlsturb
genernlizntlon of reasonings, if we assume, the correspondence betwveen two palrs of
variables (u, v) and (u', v') le established on the sume surface, For Lhis surface
the square of' lineal element in Gaufsian form and curvilinear coordinates (u, v) and

Vo
(u', v ) have the form:

Lt g

" 'AWW.‘-&.;Q AR




e

13 & = E'du” 1 2F 'y’ + G o'}
% brom Flg. 8o 1t rollows that through every point ' pass four parametrle lines,
T tor which u, v, u', v‘ are corresponding constants, Elemnents of these llnes,
2 corresponding to differentlals du, dv, dn' and dvl,
% are aqual
. VEa, VG VEa, Yoo
d
£ Let us draw from point P, an arbitrary dlrectlon
: ; Piﬂ and designate angles, formed by these directlons
- '
. and coordinute lines, by a, 8, a', 8 . and coordinate
; angles by w and w', We drop from polnt F, a
. !
perpendicular P2P2 on line PiN and find 1ts length,
1 1
Projection of broken PEAPiPE and P?DriPE on line
t
PP, are equal amony, iLhemselves and are equal to Lhe
D Kl 8O, we
: length of the perpendicular, l.e.,
VEdusina 41 Cdusind = V' Eduwsina’ 416 de'sin¥.  (7.4)
Obviously,
.. ®mig,
E o mpa
i Additionnlly we deslynate g - a' = vy, then:
é. Cmp-—-hua'-l--:—.
F. Pama oy }‘ (7.1)
z a:.- s '
kN
i ' 1 '
We will copy (7.4), expressing in it a, Pand B by @, vy, waund w by (7.5),
then
g VEduSin(s’ 4 ) +
. »
. & +V Gosin(x'+3)~
R w) Edine +
5 + VT sin(s" + w). ) (7.41)
N

Replacing o' througiout in (7.4') by the formula

e -

s - al_“o;
i e obtain:
iy C _ .
: 2 V!du sin{s’ +:"'-u-.') + "a.du sinQ + 4 —a') = |'E":".\iit(3‘-m') +
£y + VT &' siny, (7.4")
7 o
o -
i 192
v N -’ -
]
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birection Py N is selected absolulely arbitraorily and equalltles (7.4') and (7.4")
otvioasly, do not depend on it.  Therefore we can take for (7,4") a' - U, and for

L] "
{(7.4") 1¥ ~ 0. Consequently,

VE du'sin o' = VE du sin( 4 o'~ 3} + VGdvosin(a' -~=) l wherr 37 - 0,
VOd'sine' = VE dusin(y—w) + VG dusin wnn &' - ),

LM RS RIIEY heb: 1 o1 o PR R RN T 0 A IR

Henee: .
t
du._,‘/ Esnt o'~ 1)dy | l/c g =y
© dner Tane P
. (i)
_l/E nt=w g, /G snt
Tene ' [ un--
I'vom =omparison (7.2) and (7.t) it tollows, that: .
& S Edneiv -y, EJ” =1 . RS S
[ E ene & ] E - S e N
thei) t
/f ungy - & /,‘L..'.'N_ 3
] sne [ ] ' &’ sine’ g
Eruations (7.7) are Justified for any system of curvilinear coordinates.
However the more important is the case of orthogonal systems, when w = a)' = 900. ;
Besides: ; i
'
l/ - siny: ——;— ‘/—cou.
&
i Palai Vﬁ;eol':. > ‘/ -siny. :
i :
Excluding from these equations s£in y and cos y, we obtain: ; B
VB =V L ) i '
, it {(7.8) . i
,,/5 5..... ‘-VG’G ! :
»
Fqrations (7.3) are fundamental relationships of the theory of image of one i i
i :
surt'ure on another; they express point conformity betweeir two surfuaces, if gystems i
? 1 :
(1, v) und (u , v ) are referred to different surfaces and give transformation of :
' 1 i '§
curvilinear coordinates, if systems (u, v) and (u , v ) are selected on trt same

- ey

surtace, These equations we will subsequently use very f{requently, since they glive
reneral solution of the problem o:‘ one 1mage of one surface on another ard 1mns£'or—

mition of curvnlneur coordinates on a glven surface,

Bquations (7.8} by thelr constructlon resemble known conditions of Cunchye

klemann (7). In fact, where E = % = E =G =1 from (7.8) it follows that:

* ’
NN
[ [
] * .
L M.
~ ~ )
e R oE aman 2 aaan r&‘s"ﬂm=’f‘?1’ﬁ"‘,;~ S ..mm -
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of analytic functior:

Equations (7.8} or (7.8'} possess the property of symmetry, i,e., they are

equally sultable tor resolution toth of direct, and inverse problem of image transter

of aurfaces and transformaiion of systems of coordinates,

Bquatiuns (7.1) conclude &1l possible images of one surface on another, In

apherstdal geodesy such images are used, they preserve simllarity of geometrlc T'iguresz

in thelr infinitesimal parts, Such images are ealled gonformal. Simllarity of

I'tyures, as it 1s known from geometry, huve a place, If lines, forming arbitrarily
small tisure on cne surt'ace, are proportional to corresponding linez on second curface,
and the angles, included between the lines of the first surface, are equal to angles

betlween correspondlng lines on second surface.

lnlSmuCh as the simpler surfuces are plane and sphere, then in spleroidal geodesy

couiurm«l projectlons oi a spheroid are used mainly caa plane and u sphere,

Contormul
proJection of n spheroid on a sphere is used, as noted in Chanter V, in resolnution ot

direct and lnverse geodetic problems, Very frequently the conformal projectlion of u

spherold on n sphere ls used as a step during complicated mathematical calculatlons

on n surface of n prolate spheroild, furthermore, with the help of the image of

elllpsoid on n sphere there s established a degree of geometric proximity of
terrearrinl ellipsold to a globe,

vnnuss wus the first to develop the theory and practice of conformul representatlorn

ot an ellipsold on a sphere for geodetic purposes in his work "on research in higher

geodesy, " Guuss approsch even now did not lose its value 11 spheroldal geodesy

Although we now have many othee mathods of resoluticon of this pro®lem and thorough
supplements to Quuss theory at our dlsposual, hls work in this arens still remains

classlcn)l heritage 1n spheroldal geodesy.

a

§ %0. CONFORMAY, REPRESENTATION OF BLLIPSOID ON SPHERE BY GAUSH

In presenting the question ubout representation of an ellipsold on a sphere

Guuss appllied u theory of analytlc tunctlons, speclully developed iy him., Here a

somawhat different mathematical approach le applied, in which elements of the thecry
are absent,

Square of lineal element of a spherold wlll be ex.ressed as:

' MR +N’cml3un Ammta(”h.l'u

+-¢Lj

1K, F, Gnuse,

Selected geodet!. works. T. N. M., Geodezlzdut, 1958, p, H3=91,
-194-~
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and annlogously f'or sphere
® .- ” F dU ' -
d3t = R 4 RPentUd® RiconU ( R o (h-i,
_ﬂh’L !
where K = radius of a sphere {while undetermined),

i} = lautitude on & sphere,

A = longltude on n ephere.

l.et. us introduce the deslgnations:

ma_ o, N
'Y ¢ | (7.9 -
W g ) rei %
—-D-- Y i §
then x §
&* = Nteost B{d ¢ + dLY A Ty e ~- — ~§—-—~-——-——
ot = Roros?'U(d Yt 4 diY) \ !
If you compare (7.10) with general recording of the square of llneal element : Z
by fi~uss, 1t would be easy to establish thut in our case F = ¢, F = i, Curvilinear ' ,
¢ surdinutes, for them, F = 0, E = G, are called {sometric ("uniform") coordinates, i
Thus, (¥, L) are isometric coordinates on & spheroid and (w', ), on o sphere. i ;
Isometric coordinates on given surface form a network of squares, If coordlnate [lne i
u - const. and v = const are broken down in uniform sections Au = Av, :
: Vilues ¥, 11/' are called isometric latlitudes on & spheroid and on a sphere l k H
I correspondingly. ' ;
: 1 :
i From (7.9) i ! '
g ' 2 » !
pm (OB f_ (—umdB _ F(1- eintB - ot )il ;
: Nen (1 — Saint Byeon B (= eV sin? B)eos B ! ;
. ,
f L __J’ ¢ 01 840 !
cos B "r—~c‘:!n'8'
For reduction of second integral to the right part c¢o the tabular form let us
Introeduce n new varlable under condltion:
i . oinBwiing,
Ther;
i ' ecos 848 o cospdpend | A5in' B = cou’y.
Consequently,
» _ta
Lol =y _‘; e’

P
B '

=

e viwa




A

"

%
3

Leinilg (45'— -:-)-- Intg (45’ + -;-) .
but:

b e sRTREak |
'

L]
—
1

el 5)= (g

b e b

thererore

t (-Inlg({u + - (+;-:—::::) ! ('{',11)

or
&

T ~ in the lefl part of equation (7.24') ls the base of natural functions.

For a sphere where e = O from (7.11) it follows

,-,-..usg(as-+!.), : (7.11")
2
Vnlues y and V:' are shown 1in special tables: for instance, in Cartographic

tables ot TsNIIGALK for 1°; in Curtographic¢ tables of the Hydrographic administration
1
VM3 y are given for 1 .1

RO T

Let us apply to lirenl elements (7,10) equations (7.8). Assuming that:’

Ewl mitcorlU, u'omi edt’ m)

AR
EvwGwuMNco?B, umbpmdvwml (7 )

We have

.
H
i
i
i
§
3
¢

{7.12")

where:

Vel 60
L ly(t L)

For integration of equétionn (7.42') Lt 18 necessary to set definlte geometric

(7.4%)

dIn work of Danish geodetlc instltute Geodetic Tables on interrmtional ellipsold
difference (B - y)are glven six decimal places. Copenhagen, 1956,

; aldb.

5 e ORI =2 T uuum.:ifh&w”uw-“q‘_m A e o
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‘QOHdiLiuns, which simultaneously will determine Lhe form of functions fi and f,,

or. a sphere, Let us smt n

Our ~lm {s to obtain conformni image of ellipsol

condition, tiut partllals on an ellipsolid corresponded to psrallels on a sphere,

Then, f'or strergth of conformity, meridians of an ellipsnid mus! correspond to the § |
meridinng of n sphere. This means that g m._“}w.
» P
1;-!.(#)}_ {7.131) ;
,"’t“-) : ¢
Tae bimp]pr solution is olitained, when arbitrary functlons fy and f,, possess % ?
equat Lo Lhemselves argumentz, i.o,, 3
»
Vohi()=¢ g
o [(7) = o gt -
. 7.1%"M) # -
A [y (L) L ( S S
duch approuack is expedient, If 114 is required te¢ transfer nall surface of un : § ‘
ellipsold to o sphere which is done in resolutlor of various” cartographit “provrems: f
§
¥

In resolution .of geodetic problems only comparatively smnll purts of the suryuce

wi an ellipsold studied, 1In these cases it is more profitatle to inuroduce Indefinlte

constant coefficlents, with whose help 1t is possible to use the image of small parts
of the surface in the most profiteble manner.
IJEL:

b fy(L) = 3L, (7.14)

where O 1s a constant.

Consequently,

Y (7.447)

Under these conditions from (7.12') 1t follows that:

. .
-;%--3 .

or

QWG-IQ-?CK

“ . S oA .

Without dlsturbing the generalization of resolutioh, we dééﬁhéulhgfz

.

c-.‘.

k ls nleo % constant,
We have!

LU TY TN
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Formulas (7.14) and (7.15%) glve the law of tranafer or transtormatlon of
icometrie coordinntes of » spherold to isometric conrdinates of a sphere In conforimnl
projection o rfirct Lo a second,

Formulng (7.44) and (7.1%) contaln two arbltrary constants o and k. Farthermore,
redian of ooaphere Roremaing nnknown,  The honar =t artirieinl selectlon of' vonstants
telongs to Yuuss, who proposed the selectlon ot censlanls in such o manner Lhat the
seale of Lmge m deviated from a unit by a smoll value of third order, not counting,

the factor e,
d l

2. {n contormal projection scale m = EE does not depend on dlrectlon und s a

: A A S .

¥ ruanctlon of the latih je:

¢

{ Mo m(B)mmiByt (B— B (7.16)
; Applying Maclanurin series to (7.10), we obtain:

?

%
i
:
'

- hencet

oo my (B BYm, 4 OBl L BB gy

where B, = Lhe latliude of centrul parallel of depleted part of = surface, L.
d'm ' "
- Derivatlives Ny Mys ove PR *aleututed by latitude I*Q.
i

For deterninntion of constants fo R, a and k let us set the fcilowling conditions:
1el scule m on central parullel be egual to one, but on other psrallela It deviates
fron one by values of third order, considering difference (R = Po)u value of f'irst

ke, Thege conditions anntytioally are expreassed by equal lengs:

1. mym|
20 m:‘-o (’fli'()
3. m w0 -
and .
m-|14£%#Xm7+ el (7.1R)

“Klemént of parallel of a spheroid is equal to N cre R d I, and the mertdian —
MdD; thege elements on u sphere will be R cos Udx and RdU,
By condition of conformitys

AnnldL Nqul *

gsme -
. _saUdl ' Nunt
r bl e e
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1
ly condition My = [¢]

consequently,

_.M.caU.lan. M, cos Upsin B, -0
Nlem's, Neals,

vl

asinUy= sin B,, » (7.00)
i . . . .
In order that my = 0, would be sufficlently needed:

d .
-—;;—-(—-u!nv-{-sln B) w0,

or

"‘“03”0"':‘:!- + Co3 By o ~ ot —%‘-:——':: + cos B,,
(]

Consequently,

"“"ﬁ'.‘t':—:?“'ma‘ (7.201)

or:

I.C“'Ug - ——’-—-—” “'-.‘— -—-—.—.&_—Jﬂ = rein? By)costB, .
M, fomgt

But by the formula (7.20):

ot 005Ny e 0t sin' B,,
therefore:

it 8, 4 = ":"_'_'.';.‘“""- 14+ ".‘:‘:‘ -1 4 efcor B,

Flaally:
' cmVitetcn's, (7.21)
By equation (7.21) where a given B, determines a; from (7.20) find U. Having

Ho nnd U0 by the formules (7.1_1)|and (7.41'), we determine ¢ and w'. With ¥, 4/' and

a ‘ror (7.15) we find second constant of projection k by the formuls:
h;i;--’..q, (7.22)

Friou cundltion my = 1 it follows that:

) .

\ . -
" "( IRML'.-l
“ \’, Nycm By '
hience, taking .; to account (7,20'),
b
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Ry Motrh | NecwBe /UL ‘ {7.0%)

sem U, A
-2 cou B,

M,

+

Thus, radlus of sphere HO Is equal o mean radlus of carvature ol » spherotd

E ot Iatitude of central parallel HO. Freguently tne latltude of the centrnl parnllel
: lo called normnl,  Inasmuch s central parallel cun be selected, congldering tne

: benerits of the resolution ot the vroblen on hand, 1t Lo betler to cutl LU standard
r parallel,

; Omitting detnila of enlculntiong, lel ug record Lhe approximate value or third

derivative of the ceale by latitudes

o _ 21~ eMsin28,
M= ey Tt

Consequently,

«* (1 ~ ¢") 3in 28, ‘
n-l—-m~(8—&)’+ oo ot b (7-2“:)

f'or numerlcal calculutlons this formula can be used in the yorm
moul— £ 5in28, (B~ Bo + (7. 24"
) 0( . ] + b . Lttt
Where B, = 45°, difrererces (B - Bo) = 1/40, whirh will correspond to differencen

ol' latitude upproximate-iy by 1%.5

San 2 BB g
S $in 2By (B~ B, = 3.150.40.4). 4 8 100 *

Hence follows a very lmrortant derlvatlon Lhal §If a maximum distortion ot tineul
elements i3 nllowed by the value of -$"7 al tihe edge o a bell three desrees wlde
310
along a4 lutirtude, Lhen the sciale within the 1llmits of this belt can be consldered
coitstant ond equal to 1, In thls cuse 1t will not be necessary to introduce

corrections in tiie measured clewents, i.e., In lengths and direction., Thus, we see

"f;@"ﬁmzz: oy -irw.!*ﬂﬁ«q_w_r.’.—r-.zst e

that suftriclently significant parts of o surface of a terrestrlul spherold can be

replaced by spherical with the help of m properly selected fhdius. As can be neen

from (7.23) thic radlus should be the mean radlus of curvature of an elllpsold on

the standard parallel.

As a result of clted Investlgations the following plan tor LhessnluLlon of

¢ ! geodetic problems ls obtulned from givwn geodetle coordinates of the flrst polnt of
triangulaticnh we convert to spherical covrdinates by the formalas (7.18) and (7.15); i
the triangulation is located within the limits of a three-degree lutitudinnl belt, then

it is taken as lylng on the surface of s sphere and huving the same anglec and sides,

=200~
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w6 on oan ellipsotld; by tnese data we calculate the lutitude and longltinle off puints

o Lelangalanion on o sphere; Lhen from Lhem we convert to geodetic coordinntes of

spl erold,  Transition from geodetic coordinates to gphericenl and conversely o:oinld
he qccomplished with help of speclial tables, Gmuss composed such lubles,
sueh rethod of calculation of geodetic coordinates wus applied in the puast in

Rusein in uecomplishment of land exploitation work in Transcauecasus, AL preserd

Lhin method does not have practical vulue, bul presents o methodien] Intoerest vor

spheroldnl geodesy 1t glves clear example of geometric appreach to resotution or

peodetic prohlem,  Henefits of guch uapproach become perceptible, wien tre dimenslon.:

ot deplcted Lerritories are such that within its limits the scale of image can be
traken as equal to one and, thus, eliminales the reducticn problem.

§ 41, APPLICATION OF CONFORMAL REPRESENTATION Git ELLIPSOID OH A STHLRE
TO RESOLUTION OF DIRECT GEODETIC PROBLEM

In preceding paragraph it is shown that In the purt of a suriuve of a

terrestrlal spherold, limited by parallels, whose difference of latitudes does not
exceed 3° (with accuracy up to 1-10'8), it can be taken as spherical. Radius of a

sphere is equil to the mean radius of curvature of a spheroid on the standuard

perullel,  Uslng this important derivation, it is more expedient to resolve spherod:l

problems by means of representation of a spheroid on a sphere. uslng the splhiere as

i Intermediate instance in mathematical derivations,

Aresz of appllicallion of this method is quite extensive, but for the illustrutior

o’ bnsle ldea it 1s sufficient to consider one classlical example, solved by Guuss,

Ve hnve in mind a derivatior o) formulas with mean arguments for resolution of the

direct geodesic problem for distances, not exceeding 25-30 km,

ot' representation by latitude will be less than 1°, and the scale of the lmuge will

be equal ‘¢ 1 everywhere,
Therefore:

1. MdB w RV ] '
2. NeosBumaReosU] ' (7.25)

Changing from differentials dB and dU tc “inite diff'erences and substituting

curreni. purallel by the standard, we obtaint

Mp == R \ 1
Nocon By Wy 208Uyl (7.29")

We hnves

In this case the area

PR v Meraedde o ok R RN U RV,
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sin By= wsin U, (7.20)

I-’o — latitude of medinn point of arc s on a spherotd,

& u, + U,
& 1
g U, — meun latitude on a sphere, equal $0 —Smm—= = = U,
' trom (5.18) Lt tollows that (FO - Pm) {s smull value of Lhe second order; with
wecurncy up to values of thilrd order, 1t can be taken as:
Lum-22 bt ..ty
- - . (7.20)
- 2, NotosB m aR,cosUp 4 . . 41
- 3. sinBywasinl 4+,
o On 2 sphere polar :phnmidnl triangle P, PP, (Fig. $le) will correspond polar
- 5 .
LI B ]
. spherical irlangle "11‘ l’ (Iig. 81b),  2pplying te spherical trinngle P1P P,e
- Gnuss-Delamhre formulu, we obtain:
lln—-——-slnA_-sln———cosU
sin—2— cos A, = cos 8L yjn Y.
o ' : (7.27)
cos E—'ﬂﬂ —'- - sln lin v,
l ﬂ‘
3 —_— 22 cos X
08— “. Jao €08 g =05 - cos 7
leTe fmAymA,£180%, Ao = dthtid?
I'ig. 81. 2
Arivanginy lnes and cosines of acute ungles in
- serles and retalning in them small values of third order inclusively, from {7.27)
' we obhain '
s: -——' (l—-—-)slnA o™= afcosU, (l 2
b SRS, u
; ("Tﬁ cosA, -u(l-..ii_)( *_%,._)
= (7.271)

(5=
(- -5~ 5).

In all correcllon terms, in parenth-ses, with error in values of

* fourth order

it is possible to accept that a® = 1.
From the lasl equation it follows with the same accuracy, that:

;-g-.- 2 g9,
x Pyat—g (7.28)

Substituting by the formulas {7,26) spherical elements by spheroidsl In {7.27!)

and expressing differences of lutlitudes, longltudes, and azimuths in seconds, we

obtain:
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L . *cor 4 (l £ .!___)
M, ¢ - + I’,‘:"' + zuul '

" B ]
P i $”sIn A, sec B_(l — _’__+ .".__.) )
N- N,'n"‘ 2‘:‘11.

7 ] L] 0 ]
’n..l"slnB,,(l + -;%'-'— + —.E;:;—- "—'2-;-:-;) .

Introducing known designuatlons:
'll - "l - -
Mo -~ (nﬂ- —N—. (2)-"
(1) sc0s A =P,

) s5in A secB, =i,
Q). ssinA g8 =1,

arter transition to logarithms we obtuin:

9o~ migh + vl + 13

g gy + ¢ v — o (7.29)

. I R Y 1
1g2” v lg?:. + L +—'—v).. - v, ;

In formulas (7.29)
109

e

v o

f

A} 1 " Ll 1]
in correction terms it is taken that b = Bm, 1 = Am and t o~ t

Formulas (7.29) were already okt.ined in Chapter V under number (5.27),

Here

the object was to show, how the problem in guestion can be resolved with application
o' contformal representation of an ellipsold on a sphere according to Gauss,
§ 42, CERTAIN OTHER METHODS 'F REPRESENTATION OF AN ELLIPSOID
ON A SPHERE
Trom p'scedlng paragraphs of this chapter 1t follows that for representing an

ellipsold on 4 sphere we are free to select from three parameters or constants, one

of whieh 15 the raudius of a sphere. Frequently in representing an ellipsoild on #

sphiere for geodetic purposes, it is expedient to take a sph> e with unit radius,
but with remalning two parameters, to act in conformity with probl>m at hand. 1t is
absolutely clear that the variants of representation sre many and the problem will
conslst In selection of the most sultable .or a glven purpose.

Let. us consider the more impo»tant and simple in geodetlc sense of representution

of a spherold on a sphere of unit radius.
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1, yphericul Hepresentation

Let us assume that on o sphepe of a:it radins the geodetiv coordinates, lailtude

aob lopemlitade of points ccitebdse wity eodetle cocrdinntes o o spherold, Loe,,

uwmB .
.30
vt | (7. 30)

Then seales of representationt
1 et T
v - on parstilel,
1 . .
- = 0n rerialtan,

- '
f‘—"—'i'_L ‘3'9;—'-4 -~ in the directiocn with azimath A,

wnere N = padiugs o curvature of tirat vertical,
M -~ padius of curvature of meridian,
caide Inverse to scale of representation

N — on puarallel,

s|=
B

M — on meridian,
Nsin?A’4 Mcos?4’ — by direction with azimuth A' on & sphere,
Let u- designate:
d: = element of geodesle zrec on a sphercid,
der — element of great c¢lrcle cn a sphere,

Consequently,

do
m e P .
ori
dsm 22 o (Wsin? A 4 Mcost A1 do, (7.%1)
But, as 1t is known, on a sphere
sind' =24
c B

1
Ay — nzimuth ot the great eircle are at polnt of lts Interseclion with equutor,

S

Further,

Neooo, M..ﬂl'_";'.!,
Substltuting these values in (7.31) und converting to integral, we obtain:
» )
- X cos? A° 12\ 4%
s (. cost A, 4 asin A,) ~u
%A
Vattdeuns s Lttt L.

Introducing thls expression w" for integral and sutlstylng lntegrution with
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Lhee help ef Wallaece integrala, we cbtaln:

sesa(l — o) {84 32AW, + 15,3 W, + oMW ¢ . . (7.2

Neeten?A,
V]
AV,--{-Iﬂn'Bde (N2 8 16 iem? 4,6,
[ )
a

[RLESTTR o SEUEE ¥ L S S

*s
M-{'d-.

Lot s degipnate elementary arc

dn“ = parallels on a sphere,

o B sl g

meridian on n sphere,

2
i

st L

ds = parallels on a sphereid,

meridlan on a spheroid.

[+ %
&
i

We huves

do, = mds,. ds, =m,ds,; [ -il,_: My = ."_'

On sphere On ellipsold ;
de, = dasin A’, ds, = dssin A, s ‘
do, = docos A, ds,. = dscos A, ‘ ‘ *
Therefore:
QA % ¥ w4 -
du, dy N ’
Rk ;
ors :
! ‘
1A =V-tig 4 (7.33) ! i
|

Wy this very simple formula we calculate azimuths of ares of the great circles

e

on 1 sphere of normils. Value V'2 by argument o gilven latitude can be taken from

geodetlc tables, where lg V are glven with a large number of declimal places,

From (7.33) with accuracy up to small values of the second order we haye:

A=A =" —';—.-eu'aﬂnu
. (7.33")
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2. lhuunl-vpucing Representation

Flement of parallel on «
Dlemes o of papatlel ono s

Consequently, n = & coe u di

svhare

woews uody,

sprereid doeoe 41,

s B di 1.

Conswguently, condltion of equal spacing along purallels s contained in

equntiona:

1. tgu-Vu_é:ga] -
2. L-‘ . (7.514)

where u — given latitude,

The first of {7.34) ufter differenliation glves:

n an ellipsold:

~n - sphere:

where:

‘:;""!’I.f?'—;l;- ‘ (7.35)
ea~ ot (a)
lzu-'-l"—:-.f, . | (b)
o 2 (e)

From rormulas (a), {b), and (¢) 1t follows, that

With accuracy up to small values of the second order

ga=1""1gA (7.36)
(A—a) n P"—f;*cos’ﬂsin 24, (7.36")

2:-h8

.
Ame, = p'.-%- -l 3337356,

We find expression for length of arc of a geodesic tirpugh arc of a greast circle,

Element of geodetic longitude:

on a sphernid

6-100

on a sphere

‘—-:—unAncB, A2 snasecn

Consequently,

But N cos P = a ¢cos u, -therefore:

o ¥ ovs B sin
T:.oauﬁ: : (7.37)
. LA I
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2.2 1

Prem (7.40)

141 Aw | 4 Vigte,

ur
._._'._ - __'.....(l 4 e tenst Bsinta
ce®A  costa ! *a).

Substituting

- r:'-'_‘; cot B NNt

I —donty
we obbaln
o’ 1+ S olin®e cos'
ot A § o P o08? 4

Put on a sphere:

coz 1 sin a = sin 0.3,

where @ — azimuth of great clrcle arc at its point of intersection with eguut »r.

Therefore:
tms _l+c’(sln':.—m'a) E
et g fwglomty (7.;\4‘-’,
From (7.36)
sintz cost 3 1 4 ¢8 {sin? 2, — cos? u) /
Py =y B g P (7.381)
1t. 1s known, that
]
_V’— 1 —dcoetn
From (7.38') after extraction of a square root
-:"-:-i-.. V1 +asints, — cos). (7.39)
For « sphere
sinu = sine cosa,
or:
'ees'u-l-sln'ccos't,.

Substitating (7.39) and (7.40) in (7.37), we obtain:

ds-al/l-—t‘ouﬂa,uuFO-dh
Let us designate

e coste, m Al
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Hvre

Fomi—Lat 3 gt 5 48

-:- = Fou — F, sin0cos(29, 4 9) — Fysin 20 cos (s, + 23).

Arrangling VI—-kﬁnﬁ« In serles and integrating term by term, we obtuln

(7.43)

(7.4%)

3 - . 4 o 658
: Fim o M4 oM+ st
Fim %‘*: + '5—:’-‘:
For coerlficients Fiye &1. F? specinl tables can be composed by argument kg, they
will huve the suame form, as tables for Bessel melhod,
. 3. Understanding of Apusphere

In representation of an elllpsoid on a sphere geodetic problems are resolved

- - simply, it small psrts of a surface are depicted.

13 close to a unlt and the questlon about introductlon of reduction does not arise.

In
is

Inevitabe,

vt

In thls case the scale of Ilmage

In connection with this » new problem appeared about representation

ln representation of small parts of an elllpsold on a sphere.
P p

In 1947 English geodeslut M, Hotine! propused to use an image of nn elllpsoid

on aposphere ror geodetic purposes,

Aposphere ls the gurfice of a prolale, whoge

representation of significant parts of an ellipsoid complicated reduction prohlem

an elllpsold on such a surface, where raduction problem was also simply resolved,

axis colncides with the axls or rotation of an ellipsuld, but meridiuns are determined

f'rom «ar: equation:

#°* =R schaly 4+ c)

secant; H‘, Qa and ¢ —~ cong: ‘. images,
For determinatlon of constunts conditions are made,
1.
and aposphere are eguul, i.e,,

'.-’..

2. Geodetic latitudes are determined from equation

[l .
— g — Y
i s B,

1T, Hotine., The orthomorphic projection of the Spheroid,
19461947, No. 52«00,

(7.45)

where r' ~ radius of parallel of aposphere; ¥ — isometric latiiude; sch ~ hyperbolilce

On central parallel of depleted territory radil of parallels of « sphieroid

(7.30)

{(7.47)

Emplre Survey keview,
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ne =smr, (7.51)

i are ~lso nre equal, Consequently, a sphercid and an aposphere along this parallel A
have penersl meridional tangency and radius of curvature of the flrst vertiec:s) N. '
4, Curvatures of meridlun sectlions along thi~ parallel, equal fo % are .
- tdentienl, theretore tangency occurs botti snlong meridlan, and parallel.
These three conditlions fully determine R‘. a and ¢, Omitting detadls of i
1
« enleulutlons, whieh on the whole coincide with anologous calculations in *
representation of un ellipsoid on a sphere by Gauss, glve followlng 1'inal resulis:
&
1. a%m | "% cost B, k :
2 X2 pm . (7. 4%) f
o ¢ , A
3 stha(n+e)wsin By .
' %
_ ~ign "0" indicates that corresponding values are referred to latitude of 2
i &
: central parallel, 8
‘ L
N From characteristic function (7.%5) of aposphere susue the follow!ng propertien,
\ \ , DR S _
1. Cuuss curvature of aposphere, equai to —-;; - 13 congtant. for nll points :
on the surfnce, therefore it may vbe developed into a sphere of radius it withour !
distortions Just as cone and cylinder an a plone, Equation of thig sphere cun bhe s
i represented in the form: '
t
= Rschy,, (7.49) i
¥, = lsometric latltude on a sptere, "
. Parnmetrlc llnes of aposphere, meridians and parallels, conver! Lo a sphere ¥
) ;
: withcut distortion. '
2. lsometric coordinates of a sphere, as In the case of representatlon of v
i
i‘ ellipsoid on u sphere by Gauss, are determined from equations: i {
P ! ;
1 ’ “-‘) ' (7 - N
4 . . 50) y
3 feoma(y+0) {
| Slnce senle m 18 constant everywhere, then: :
i
1 i

From formulam (7.50) and (7.51) 1t follows that any expression, determining
projection of meridians and parallels of a sphere of radius R on a plane, as runclion

ot ynlues kc and Voo in accuracy 18 applicable for projection of an aposphere on'a’

plune, if Yo ls substlituted for y and A, for X\, This position iz equally appllcable

with respect to both lengths and angles, Character of projection from auch

substitution is not changed,
3, Main radii of curvature M and N at any peint of aposphere just us on a
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spherold {(with the exceptlon of pules), are not equial. ‘Therefore selection of

[ 4
congtant R, @, ¢ can te carried out so that where Insimnificant . areans the scale will

remein fwetanlly conctant and cluse to u ounit, i,e,, ubl polnts with equal ¢ values of
rq and r will be almost equul.,
At'ter projection of elllpsol? on an :posphere Lt 1s possivle to rasolve peodetic
probiens on bhe aposphere.  Bowever thls problem was uotl daveloped in detall up till
row,  But uge of' aposphere as intermediate instance during projection of an elllpsold )
ot 4 plune renders geometrle clarliy of resolution of the problem. Ln thls case

procecd thua,

oot !5\{: LR R NS T R Ly s

1, Deplet surrace of an ellipsold on uposphere which s reduced to delersinalion
. v
ol comttant parameters R, a and ¢,
2. Aposphere 1s developed on o gphere, l.e., the law of transition of lgometric

vocralnates ¢ and X of upoaphere to ¥, and kc of a gphere, 1s estubllished,

TS

: 1, Project sphere on a pilane of u chosen projection. With suituble seleciion
o' purameters senle of Lhe lmage at any polnt will be little different from the scale

or the imge of i sphere on o plane,  therefore reduction in angles nnd lengthy wlll

be smnall,
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CHAPTER VIIL

GEODETIC PROJECILIONS

§ 43, BASIC POSITIONS AND DETERMINATION

knglneering geodetic works, intended for geodetic guarantee of construction
o Lunnels, irrigating systems, thermal and hydro-electric stabklions, alrports,
raltronds, hlghways, superhighways, bridges, industrial and sgricultural prolects
ana so rorth, are ns a rule, executed In 1 comparatively small areas, tate
topographic surveys, especially large-scale, being developed gradually, also emhrace
In every stage only small parts of the terrain.

tystem of coordlnates and mathematlcal treatment of materials of limited geodetvic
nets, mnde for indicated purposes, have to he of the simpler type, For englreering-
grodetle work 1t is lnexpedient to use a gsystem of geodetic coordinat.s, in splte of
the faet. that they are general for all the surfece of the terrestriul spheroid, since
they nre obtalned by means of relatlvely complicated calculations and moreover are
in are r'orm, but linear values of are units change with change of latitude of the
plnee, 'The simpler form 1g the grid system of coordinates on a plane, which however,
la not directly connected with the surface of terrestrial spherold. Investigation
of curvature of the surfuce of a apheroid shows that only very sméll sections of 1t
¢nh be Loken as a plane, Thue, for instance, "if one were to determine linenl elemente
of geodelic nets with accuracy of up to 0.4 mm, then only a section of earth's
gurtace of 9 km radius can be taken as a plane, Therefore applicution of plane grid
noordinntes in geodetic work is only possible by means of projecticn of parts of the

Burface of n reference=-erllipsoid on a plane, Selection of projectlon f'or vonverting
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rewedetic vonstraction from el lipsoid w0 s plane pre oonts trecreticnlly and preactienlly

nn lmportant problem ror sphoerclidal geodesy,

redections of vrererence-ellipceld on plunez, faken tor econversion and trentment
ul' geodellc measurements, are cualled geodetic, In distinction from cartogruphle

vrogections, where the maln problewr consicts of representalion of earth's surfuace

i
i
H

v o peper (plre) ) geoderte projectione xive methods of exanet eonversion ot elements

- ol surrace of an ellipseld (lines, angles) to a plune, Many cartographic and geodelic

A4

proajections ean be offered, In selectlon ol geodetlic projections initial condltlionz

R 2

nre:  amount ol disrtortions and simplicity of their ecalculation, it is gulite clear

el the less the distortion Lnoa glven prolection, the greater the terrlitory where

s it

Lt ean be upplled. However minimum ot distortions and simplicity or Lhelv caleulation
in general are lncempatible tn geodetic projections, Characteristic pecullarity of |
readetic projections s in the fact that for translatlon and treatment o!' every
peodetic net the whole process of application or’ projection is wholly repented.
Distortions are inevituble In any-projection, therefore thé main requirement
in selection of geodetic projection should be corsidered the ense and convenlence
o exlealation of distortlions. ‘However this requirement still does not determine
thwe chapacter and torm of projection.
deodetle construction, us & rule, is developed by means of measurement of angles
© ot geometric t'lgures, and llnear measurements are made, for instance, in triangulation
only ror assignment of scale o1 the rel, Thus, ln selectlon of projectlion a condition
should be set, that angles of geodexic nevs during thelr translation from an elllpsold
Lo a plane of projection preserve thelr values, 3uch projectiors, where equallty of

angles is observed, are called equiangular or conformal in mathematical cartography.

f For geodesy conflormal projectiong possess a very important property, tney

'§ preserve similarity in infinltesimal parts. However there is an infinite number of

conformal projections of an ellipsoid to a plane. Problem ln general conslsts in

R 4

aeiection from them ol one, thal best satisfles the geographic dlsposition of a given
. area and 18 convenlent fof practical caleulutions,

Territory of the Sovliet Union extends approximately §5° 1n latitude, and nearly
150° in longitude., Mathematleal eartography recommends in geaeral (hat in represens
tation of a territory, stretched aleng longltudes, the use of conleal projeztions,
Therefore. Lt would seem that for geodetlc work In USSR one ghould Lake some noniecal

conformnl projection, However investigationa show that tranasition from ellipsoldul
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taos plane 1a very comrlicated In conlel profecticns,  Fealden e, contest

e s

Pl iel ot an nreq, whose Imajge, as ua ruie, s taken for the uxlis o ordlaates, In
conical protlections will be a circumference, Due to thls It 1s necessury o divide
tte depleted nres by merldians Into smiller sectlons, within the llmtts of which

tue representnation of a central parallel can be taken for a stralphtit 1ine, This
prodaces preat lnconvenlences, particularly in sigrnificant removal tf'rom the centenld
meridi o et the country.  As ean be sa2en from precedlng chapter constant conleal
projections ctunmge with the change of central parallel,

The wbove fundamental conziderntions formed the basis for selection af gecastic
projection for the USSR,  Selectlon, in 1928-1930 fell on Gauss-Kriyter conform:
projection, which up to that time had comparatively small appllcation in geodetic
work In USSR and abroad,

tnuss-Kruger projection, initially called "Method of Projection, Hanover Htnte
Survey," was developed and introduced in thirtleth years of the past century by Gauss
during survey of the Hanover«Duchy., However during his life Gauss did not publish
thls work, Ideas and individual investigatlions of Gauss in the form of miscellaneousg
notes were revealed in his llterary heritage by Kruger and published in IX volume ot
Lhe works of Gauss., ~ All this macerial is translated into Russian lanpunge and
published in the second volume "of Selected geodetic compositions™ of Gauss,' Kruger
gervice is in the fact that he developed and systematically expounded the thieory und
pracilee of this projection in his work "Konforme Abbidung des Erdellipsoids in der
khene," (Consormal repretentation of terrestrial ellipsold on a plane, Lelpzir,
1912),

Guuss-Kruger projection (trunsverse-cylindrical for a sphere) is used in
separation of the surface of a reference-ellipsoid into coordinate zones, bounded by
neridiang and spreading from North to South Poles.

Gauss=Kruger projection is determined by the following conditions:

i, Gnuss<~Kruger projection is conformal,'i.e., the scale of the lmage 1s
constant nt a glven point and consequently, depends nsnly on coordinates of n point.
2, Axlal meridlan of each gone is depicted on a plane by a straight line,

taken as an axis of ubscissas,
Origin of coordinates in each zone ls selected at a point of intersection of

1k, F, Gauss. Selected geodetic compositions. Vol. II, "Higher geodesy."
Edited and with introduction by G, V. Bagratuni, M., Geodezizdat, 1958, p. 149-171.
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the lmage of the axlul meri-dion with the lmage or the eguator, Axis of ordinates
colneldes with the image of equator,
. The seule of the Image on uxial meridinn 1is equal to 1, i.e., axial meridinn

is sdepleted on 1 plane in Mll-size. Thus, for points of axial meridlan Lhe abseissas

are equal Lo sres of meridian, counted rrom equator,

ires nwich

Jystem of
6% rores

¥Width of grid coordinate zones 18 established, proceeding from velues of linear
dlstortions and taking into sccount the convenlence of practical application ot

formulas, In USSR two systems of coordlnute zones are used: six~degree and

three-degree zones (Flg, 82), Axlal merldlans of siz-degree zones coinclde with

central meridlians on map sheets, scale 1:1,00M,000 and ordinal number of a zone 13

deternined hy the formul:
A= N—30,

where N — nusber ot column or mup sheet 1:1,000,000,
Lenglitudes of axiesl meridians of six-degree zones are determined by the formula
Ly=bn =3,

Within the limite of USSR, abscissas of Gauss-Kruger coordinates, counted from
the image of equator &0 north, are positive, ordlnates are also positive eugtward,
they are negative westward from axial meridian., 1In order not to deal wlth negative
vialues, at polnts‘of axiel meridlan ordinates of 500,000 m with obligatory Indication
ahead of a number of coordinete zone are conditionally added,

System of three-degree zcnes 1s used for large-scale surveys and treatment of
materials of numerical surveys. Axial merldians of three=-degree zones are selacted
g0 that they either coincide with central meridians of individual meridiuns of map

sheets of 1:1,000,000 snale, Coincidence of central and axisl meridians occurs

-2:k.
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¥ ?
throups every threeedegree zone, therefore hglf of them coincldes with centrs:l, nnd g
colt ALt Individun) meridlans of the 1:1,000,0Wiemap sheetls, Longitudes o qafnl fx
peridiann of three-degree onet nre determlned Ly ti formuls 3
t
: Ly~ 34, ;
k = number corresponding to thrre-degree zone, '
In Lhree-depree sones rile of signs for abselseas and ordinates Is the gave, g
noin slx-deprer zones, tmt conditional increase of ordinates 1o von spplled, %
Jyslem of conrdinute zones In geodetic work off U3DK iz (lemly fired, numierr }
and nxiul merldians ure predetermined. In Tahle 9 all daty, periuzining *o coordinate
: zonen of USSR on Gnugs-Kruger projection is given, 2
H
. Table 9 ?
S4x-Dagras zonus Thirne=le ree wnes T
Lorwitude Nmber of ngituda Longitu1a X
lons oolumns of Jone ngitu Jone okt :
of uxtal r uxial " Sf 1xial ¢
Munters [ 00 VN ::’;,.ooo.ooo Numbarg | o SR%, | humvers merdinng ‘
] il -] | n M 102* )
[] 3 » 9 n EL 105 i
7 » n 10 3 » 08 :
. s & ) 0 K 3 11 i
L] .M » 1] % » 1 H
w & © 1 » » ur !
" [ 4§ " 2 © 1% i
] ® 42 15 45 4 12 {
. >3 o 43 1) 4 2 126
g 8 g Jg. ;: :; }g :
3 135
M 41 54 kd 8l 53 158 §
3 1174 55 » 8 84 162
% 183 86 bl 87 s [
a0 1% 57 0 L 4] ] 1.
29 165 sa N 9 57 114
0 114 ] 4 % . 174 3
3 7 & Q3 v ] n
¥rom preceding account it follows that of Gauss-Kruger projection ullows to ;
. estahlish uniformity in calculation of plane conformal coordinates for all of the !
k] i
1 i
: USSR, but these coordinntes are celculnted H
. In a definite zone, where each zone has lts !
; 1
.4 ,'j H
! own system of coordinates, ‘inerefore in !
Vyntam ol‘
vt sones By their practical application it is necessary
, ’ to recompute coordinates trom one zone to
; one adJacent to it., In connection with this
) ﬁgnum of §°¢ '
. 1 mn in USSR overlap of zones by 37.45 Iln longltude
i 3
” is established: each six-degre western zone
F
N 13 L}
Mg, 83, ) overiaps eastern by 30 , and eastern the




1
western — by 7.0 (Fig, 83).' CLonsequentiy, coordlnates of polnts o geodetic nrts
located in 14 overlap band are glven, in -« system of Lwo adjrcent zones.

in peodetlo wore ot speel ] scolpenrent, vor Ieotanee In ou survey

Gff eltien,
vonLtructlorn, o? tunnels, constraction of industrlial and agrien)tursl projects and
30 torth, for the purpose of decrense or excention of Influence of distorrions of
pros.otion, deviation Ls oltowed from conventional sceheme of applicatlon of projectlion
wnd coordinntes of iwuss-Krunwr. In these cazes the origin of coordlnntes and axiul
mervidian nré selected in tie center of Lhwe oObjiect: however coordinates of polntz of
Banfe peotdet Le net munee olge be caleulated in corresponding six or ihree-degree zones,
In selection of sectliontl berinning ot grid coordinates and sectlonnl axial meridian
they should be so caleulated so thuat distortion of projection would not be taken ihLo
consideration.

Pagle designations and vilues, used in transition from an ellipssid to a plane,
in tauss-Kruger projectlon ire shown below in an example of translullon of i
trlqpnpgulatlon triangle,

In Wig., 8% ¢ ls axtal merldian ot ;v zone; Pip is a meridian of a point Fi;
PiT is a geodetic parallel. P1P?P5 is a triangulation trlangle, whose sides s, 8y

and 5, are geodesicy; A 1o

”’fm”” azimuth of n geodesic s; t ig 2

1" & spharotd

geodetlc convergence ol meridiuns

— gy

on an ellipsold; 1 15 difterence

§

g ot geodetic longliudes, Geodellice

3 coordinates of point P, (1 and L)

E are consldered given, k

o

? In Fig. 85 2 geodetic triangle
PlPQP3 is deplcted {Fig. 84) on u

s Trago of saoator ¥ plane of Gauss-Kruger projectlon.

Fig. 8%. Flg. 85, 0X is image of axial merlidian;

t
P4X is meridlan of point Dy;

PiP;P; is an image of spheroidnl triangle P1P2P5. Straight linea, connecting noints

t

I ,‘ﬁ and P' are chords of images of geodesles s, 8, and s_; P T' is 8 line,
1 2 3 1 2

1

At present zone overlap 1s wastabllshed at 1° along longltude: western und
]
eagtern zones are mutunlly overlap by 30,
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faraller Lo sxinl werldlan, e Lo conformity the angles Letweer tne corregporsing

Vlren tnoq plane are preserved, therefore angles ot vertexeg ?1’ ERPRY O B AN A

1 + 0t
“rrerc Uit L treinnple are eoucl T angles of a plune triangle Fj’ﬁ?4. formel by ooarves
by inegren of Lthe sldes of a triangle on 9 plane.  Angle between the chord and tie

e, parallel Lo axinl meridian, ls called direc.ional angle {(grid azimuth) on 1

plone cond is designated a; it is counted of'!' by the same rule, ac azimurh: L

sngle between tangent to Image of meridinn of a given polnt and line, parallel 1o

T e B 1mwﬁm

selsl omeridian, L0 oenlled Gauss convergence of merldlang or convergence ¢f meridi..

on ci_plane nnd 15 4esignated : the angle between chord snd Image or geodesinr tu é
called correctlon for curvature of imuge of gecdesic or reduacrion of dlircetion o E
: is deslgnated &; these ccrrections are small, but are computed with preat nccuracy ?
: U@\ﬂmm). . %
Dif'ferencey - t issmzll value of fourth order and is equal to: +2/313q2 ;
sin R c032 B+ ... \ ;
Order of translation of support geodetlic net from an ellipscld to a plane in }
Gnuss-Kruger projectlon consists of the following stages: :
1. From geodetic coordinates of initial polnt of a net convert to Gruzs-Kruger
grid coordinates; simultanecusly calculate Gauss convergence of meridiars v. 3
7. From length of geodesic and its azimuth at initial point convert to lengtt :

and dlrectlonnl angle of the chord.

3., [I'rom angles between geodesics convert to angles between chords of their
image on n plane, '

Satisfying these actions, obtain geodetic net of rectilinear triangles on a :
plane, then equate 1t by a method of leest squares and calculate grid coordinates

of all vertexes,

§ 44  MATHEMATICAL BASES OF GAUSS-KRUGER PROJECTION

To deplet conformally the surface of a terrestrial spherold on a plane — means
Lo estnblish regulur conformlty between points of a surface and a plzne in such a
: manner that the corresponding angles of small geometric figures of a spheroid and ' R
a plane ave equal, and the sides are proportional, 1In theory of geodetic projectlons
1 ' the muin object is the establishment of an indicated point of conformity, i.e., in

determinatlion of coordinates on a plane by geodetic requirements and conversely,

General equations of point conformity can be expressed by the following

functionnl dependenclzs:




- e e

zm il L) ) N
y=his L | (8.1)
wWeeets , Lonre pectetico cacrifoacoeg, the latitude and longliude or odeploted paint,
and x, y tre 1ts grld plane coordinutes on selected projentlon,
In Gauss~Kruger prolection, where depnjcted port of 4 gurface of 5 gphereid is

“ .
Lroken down into cones, 1t 1s expedlent 1o replace geodesic longltudes in (8.1} by

ALtrerences of lougitudes of glven and axial merldlan, designating them by 1 = [ - LO;

methem«tlend reckorings are stmpiiried, It reonetie lntitndp P in (#,1) is expressed
Ly some Lric latlitade, desigtniing it .  Dependence belween g and i« is obtained in
preceding chapter by the tormilas (7.41) and (7.11'),

Let us assume that indlcuted tianstormutions are already carried out, then the

equutlions (8.1) wlll tuke the form:

xwxig )
¥y=~y0. 0

(6.2)
Jystem of coordlnates (g, L) on ellipsoid puusesses a property where dyg = de

the surtre (3 Lroken up Into 1 net of Intlnitesimal squares, Areus of Lhese

squares, natur.:ly are not equal among themselves, since they uepand on position of

aquares on the surt:ce, whose curvature changes rrom point to point., 3uch courdinate

net is called tsometric, and the system (q, 1) ts lsometric system of coordinales on

n spherold. Only prid coordinates on a plane, teing also isometric, create a network
ot equial sguares,

Isometric coordinutes possess symmetiry, i.e., in permutation of corrdinntes
isometric network does not change. By means of conversion of equatlons (8,2) with

respect to g and L it 1s possible to arrlve at:

q=qix, ) (s
lai(e, ) | .

o
N
~

tquations (8.2) and (B.3) express in general form the polnt contormity between
surface of a spherold and a plane and determine grid cootdinates {x, y) by requlred
(qs 1), Form of functions (8,2) and (&,3) is determined by required conditions whiel
should satisfy the image of a spheroid on a plane.

From equations (8.2) and (8.3) by means of differentiation we obtaln

[ [
bmg ity

(8.4)
Wkt a
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E &
CJ »
b=ttt (.01 i
] & ) ¥
‘--‘—'-d1+-‘-;—dy I3
) pertinl derlvatives in (8.4) and (£.%) have to satlsty tundsmental enquations or N
, §
S temsrormation of coordinates (7.8), which were obtained In preceding chapter, They i
Lave the forme “
-
« — —_— e ;
. VEO-—;——VEG'—: (o i3
FE N i
VEES- = -V 60
1 1
lere K, b, U, 4 are ccefrlclents ol first quadratic Torm of udenssg of: el d -
1 t
. Ltwo curtaces (u, v) and (u , v ) are curvilinear coordinates on these surfaces. Le: 5
) us conslder equations (5.6) between lsometric cocrdinutes of spheroid and a plane, &
< dquare of lineal element of a spherold has the following form in geodetic .
coordlnutes: N
dsb = M ABY - 1241 = 1*(dg* + dP), (B.7) :
. i
dgm 20 o q_j A (&.9) i
L4 [ 4 ';
' i
R Let us assume that system (u', v ) coincides with system (x, y), i.e., E = g' -
= 1, und system (u, v) — with system (a, 1), hence E = G = r2, then from (8.4) for
our cnse: 7
o _ ‘
E & - | (8.9) :
4 KR X ;
L ] &
3 Let us assume now that systems of coordinates (x, y) and (q, 1) correspondingly f $
i ' ' :
§ ccineide with (u, v) and {u, v ), then from (8.6) we obtain absolutely symmetric i
} (8.9) equations in the form: i
. !
N i
I ) . (8,10)
N
& &
Equations (8.9) und (8.10) are fundamental equations of conformal transformation ‘
: vy
. of Lsometric coordlnates. Their integration is made under initial conditions, which
are set for representation of an ellipsoid on a plane or conversely. These equutlions
i are called conditions of Cauchy-Riemann in the theory of analytic functions; they are

fundamental interrelationships as in a theory of analytic functione, Just us in
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conform:1 prapresentatlon of uriaces,

oty

1. Formul:s ror Caleulation of tdhuss-KEruper Coordingles
Ty tewde! e Conpdingtes

e ze}

In Guuss<Kruger projection the axial meridi:n ls deplcted by a straipht line

% into 1 natursl vaiue, l.e,, for poinlks of axial cerldiun ubscissuas are equal to ares
) of meridiag, Lut ordiantes are zero, 11 we designate 1he ave ot mertdian Ly X, then
for vointy of axtal meridlan where L = O we obtaln:
==X (4.11)
y=0
In «ddition, positive | hLins to correspond to positive y and to negative 1 o
by nepeiive y; to positlve and negative L only positive X corresponds, These condlilons
] tilly determine unuss-Kruger projectlorn.
- Yollowing power series satisfy the sel condltlons for Gauss-Kruger profection
smXtoltaltal+--- (8.12)
PRV IUY UV PR b
. whery ay fpa e bi' “5’ bg' b7 ... are funcltions of geodetlce latitude of n
‘ glvgn point,
From (8.12) whicre 1 = ¢ we have y = O and x = X; with negative value oi 1
; ordinute y is negative, and absclssa x Is posltive, These conditlons are tully
N sufricient for Intepgration of equatlions (3;1) with the relp o series (8,10),
?. From (8,12) i1 follows:
g [ 4X oy da, dae
CCRNCRA A A

[
——— m P e
F d + 40,8 4 Ga it + (8.13)

w ettt

LR Y ELV IR Y

or determinuation of coefficlents Qo Hys g ees hi’ bB’ b% v BUbotitute

obtalned partial derivatives (8.43) in (8.9).

" We have:

. -iX. ~
:‘;. j % ~ . “‘
™ ’ , (8.14)
“.-“'-“l
Woedn, “
“ 1.,-&
] -220-
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b ¥ is are of merldlian, whose element 1s dX = MdR,

ttient

;f

Mag | 4X ;
b= T :
thepnrore: 3 |
' “« _, (8.11) % )
r — radius of parallel, %
With thls value 9% formulus (8.44) will take Torms ?
v . L4 . - a'(-]' i . N [ - » “\
‘;ﬂ’, i
za,.._!"?, 1205, = £ ’E
. n,A60 &
“"""i“:"' 1200, = — 7. (r.16) g
M, = 5. 50408, - £ 8
Devivitives 9—{- (L =1, 2, 3 ,.,) have the lollowing vulues: ’
dq !
1 -:—'.—-—Ncosﬂslun ) :
g, !‘—"'—-—-Nem'B(l-l'-f-v.‘) E
3. L e N BeinB(G—1 B 4 4vY) |
- y } (8.17)
4 - Neos® B(5 — 1812 + 1! o 14v3~ 38080 o 1371 - Gdns?
[y
5. -:;'—.---—Ncos‘lenB(Gl—-58!’+l‘+2701.‘—330v.‘¢') 4
i
6 %---Nemw(sl-m:wmc'-:') {
liere, as before, t = tg B; 112 = e'2 cos2 B; e' are second merldlan eccentricity,
: 4y b d6r 2 f’ :
! In value 5—5 terms with 7" are dropped, and in -d—-s- terms with 3" are dropped, i ;
} q 1 Q l .
a Substituting values of derivatives -;L-f- in (8.,16), we obtain the following system of : :
q
; formulas r'or coeft'icients of power series (8.12):
i oy - !i-eulslnﬁ
i o= Neu‘.:ﬂﬂﬂ E—04 0P 44y

oy BtV (61— 5804 14+ 21041 — 30004
b.-fzal' . (8.171)
Wm0y

by D (5 1804 10 4+ 1490 BOIP £ 130 =84 w01

;...L:-..;-!-m-mt'-um'—ﬂ

Consequently,




smX+ %Nmaunn+.v;"'-';-unacwa(s_ﬂ+9v.' +a +
+-’£:.—Nsinﬂcos'6(ol—58l'+l‘+2101,'--3301,'(') (R

r »
o= NcosB 4 N CONBU —1 4 ) 4 s H 5~ 18
= puo { +")+|mw"“‘"h 180 4
+ 1 Tt~ 588t 4 1370 - iy 1Y)
3 ‘v'

+ 24
B,”

Neast B(6) — 4790 4 £79¢0' — ¢, ‘ (#.14)

Formulas (8.18) and (8,99} possess blgn neenracy nnd can be applied ror
. k]
" dirterences off longluades L oW s=4, S,e,, ror a system of slxedegree zones,

WiLkarally, ror thewesdegbee zoneg Lhuege Cormuing can be sloplitled nimely: In rormul
]

J i, oo :
tor x lerms I,'vl' and 17, nnd tor oy, terms wiih D'yt and 2.7 cnn be droppod, then for

such w vnse wWe hnve:
[ r
X X e Naln Beon B 4 =L sin Beost i85 = 1 4 On)
2} N a‘.‘\Q
K
Y- %A'cu.\ﬁ-i'-;'—:;Nc(),!fg(t_,l+'.|’+ (R, 147)
r
+ = N BB — 181t 4 1)
tay

& Pormulag tor Cedceulntlion off Ueovdetic Coordinaten
by GaugssKruger Coording'

in order to obtaln tormulag for caleulstion of geodeule coordinnten by

¢ dranag=Kraper coordhutes, TL G neeesamry Lo bnkegeste differsntinl sauntions (R 10)
‘ under rfollowlng !nltial condltlons:  wltioy « 0 should be b o» 0y X, )(0 and qﬁ gy
. Connldertny the aymmelry of prafectione with rigpeet Lo axtsl meridion snd the taet,
) Lhat slun L oalways corregponds to algn y and wlth cay algn of y valae q Lo popitive,
k we haves

i Gt P+ P (8.497)
X loby+t b P+ R A+ R+ ’ -

lerey coet't'iclents a;.n,;. n('-). b;. b;. b,;, b,} are functions of latltude of the
biase of urdinnles y, Let us deslgnhote Lhig latliude by “0’ L Lo obtalned by requlred
X, 1f' X 1B consldered un are of uxlnl merldlun, uo ie caleulnted by x nccording Lo
tubles for arca of meridluns.

Prom (8.49')

procrvenU R ‘ ) : paialil L AT T
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R e

S NI B
» .
'.T h,’+“‘”’+&|”‘ + . (H,}?D)

o, &,
:,-v T LN

- 438, y? +- 58 4t 4 -

in necordance with equutions (8.10) and (8.20) we have Lhe rollowing equation:

] ]
tor dctermliation of coefflelents: ugy, b (L < 1, 2, ...)

‘O‘

Tegpli
+36,v'+56'v‘+7b,v'+
PEO AR +y'~"-’1--
--m.v+4a:v'+ea’y°+---x

+..'-b'+

whence

I by e,

.ty . ]
2. 35,-7.—. 8. 24.-_-7;-

da, . . (&.201)

3. “‘--‘—'-. [ 40, = — 2

. dag , »y
4 T m—t, 7. 6aym e —2

AL berove,

dx = dX m MdB, a,......_., dge s "“)..L_-_;

NeosB fy

algn "0" here designates that the correspondling values are referred Lo latitude RO

base of' ordinate y,.

Congequently,
[ ”.lﬂ.. '
L o.--'—
’,' '!(_)
T LY (4 LN .4 |
et " n\a n’ 4

« M= _h (7;). - ;i(%)o( 7?"). +',l;' (T:')c}
i (2] 32112,
:3( W&+ »(al) ,;( )..'

22w

PPN TP B ¥ 1

3
:
i
|
z

b

i B 2B

IR peia .u{,f{.




4%
— —— [{. P, )
“ d' (".)" (cjc.nvﬂl-,
k. K i'_ AN LAY Y. A
(lt') (dl') ( )o(dx')o ':(dx'.)a]
» but dr = =M gin KEdk, dx = MdB, theretore:
' dr
(—;;—)0---5"1’"
& 48
) B ),
LxA W 48\ o8
‘l')u sinﬁ.(“ )n MB’(M' )‘u (8.22)
dr lﬂ 3 . dA\ [ &8 P * . <
. )=o)+ 3sn () (T3], — e (),
) o an
“ (500 o2 oo 2 28]+
- . = - 48
+4sir&(d' ) .:.-) +1smlf,( - )u—-cusl!,,(d‘ ).
di . - dnB . ’
In derivatives —T (Lt =1, 2, 3, 4, 1) and — (n =1, 2, 3, §) have the
dx dx
rollowing values:
m) v
T hT o
c’n) v e
il _’_
< . (6.23)
( ) ‘?_ i+ 9l —2—54217) ‘
s 3
-‘:.‘..) -:..‘_."."_"(|+,=+5,:+5.,:¢:)
Last derivative is taken in "spherleal presentation,” i.e., in its calculation
1t 18 tuken v‘;g = const
i
Calculating derivatives '-1-1'1 by (8.23) and substituting them in (8.71), for
dx :
coefrlclents or power serles (8,19) we obtain:
B ’ 1 1 H
o il r=Tol
( ] L ] .
V. . e B,
LR TR |
. .‘.D "
- '—5-7(5*!'23':4-2‘!3'}'612&-1-31‘5[5) : .
(8.24)
.a- ‘.‘.. ' 4
4 —__ﬂ!-
' °(5+61’+ M LV]
..u—-—-mrtﬁl+|°0"+|2040+‘5%+“\=‘9
Substituting these values of coefficients in (8.19), we obtain
-224.
‘- _.!D -
T, S




R P

!. [ n. l, ml.

t=pu—y + ¢ B+62+9—dd —

—p = """" (e|+|oori-| l20l‘-}lﬁv’+48n,!,) 8.2%)

[} [}
t-v'" S O+ 2D +
o

Formila (8.20) is final, and formula (8.25) must be converted in anch a way

mN' PR 5+ 2845+ 24¢f + 6n3 5 BeJvY). (¥.00)

tisd from | and q, we shift correspondingly to B and B,. We have:

B=B({3). B,~8{)
We designnte:
aAg-= Qu=q,

then:
p-ns(ELHEE @ e

where:
( ) =V} cos B,

:’— - —-mB.sinB.(l +47d + 3‘:),

e
~’
—‘-.—.- -»‘B sin8 (5 2 2

‘. s (Y ‘“";+&.—4ol.ﬂ

(8.28)
), = ot By =1+ 5m3 1301 1 + 73— 273wy

!

i
Substituting value Aql and &2 (1 = 1, 2, 3) from (8.25) and (8.28) to (8.27),
dq

tor unknown latitudes we have:

8-8—"‘;""-“' ¥ B+ 36+ 60— bal ) —

- E‘E}" (o|+mg+mp_. 4 (8.29)

We designate:
.l-. - _iwﬁ."'
oL R ETUELAY

:.....a% #0614+ 906 + 4500,

BBt 8l 40 0 ¢+ dp. (8.29")
Formulas (8.18), (8.29), (8.26) and (8.29') resolve direct and inverse problems

thens -
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of dauss-Kruger prolection, Lf it ls understocd tuat Ly direct protlem the determlng-
tion of %, y by ¥ and U, and under inverse the determination B and ' by x nnd y,

Grtalned rormmlas oppear very bulky, but Lheir rlgnt parls ure functlons of elilier

F, ur FO' Tierelore witl the presence of corresponding tahles for coetvicrients
- - — R ' 1 [
Mo e s Hae Ty Ty Dge Loy b, bi’ 1,5 be Lhe problem of eslenlatlion of x, y or
< . - - 4 - 4

Hoand © te pegolved rather simply,  Snch tables exist in H3SR woth tor logarithmic
calenlation{l, H, Krasovskiy ad A, A, Izotov fahiles), and for nonlognrlthmic
culeulation (i3, A, Lorvin Tables). Practice of calculations with these tables will

e discuseed in v &7,

3, Uonvergence of Meridluns on u blane

Convergence of merldians on o plane or Gauss approach in Gauss-Krug:r projection
1 enlled an oomgle between tungent to lmage of a given meridlan and o line, parallel

Lo image of uxlal wmeridian,

'
- From elementary triangle (Fig. 8u) with sides dx and
A)
’ ~ dy we have
"\ &
s &
Xegonst - @‘1 ’ 'C't"'r--:i—- {8.30)
__‘;"ﬂ.l—]:—-/ Y
From (8.12)
&
o 2t el el - )
i > : (5.31)
L e R ik
Fig. & Consequentay:

o el Codt .
e !

-—‘-!L(l-t» F+H)IH 3 g S )

Breaking down last factor by binomial and retaining smaull values to firth power

inclusive, we obtaln:

m-%{m(-ﬁ-!-_)w (o,
4--;r--

Y. JL)’ .
Subgtituting values Qps By» 8¢ b1. b3 and b5 from (8.17'), we obtuin:

s W G b o 3m i vt - L TP R JUCES PR VR P N
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S e o

gy =1IsinB 4 —;—-slnscas'li(l B LR S LA N TUY

+'Lssin8cqs‘B(2+4l'+2l‘+lsq')l‘.}.. .. : (8,42

Cenverpence of meridians v s 30, therefore for calculation of this valae 11 i
cpeciont Lo repince thangent of o small angle bty an angie in tire tormala:

z=18:—-;-'e’7+¥';fc‘1—--- (v, 43)

“inw1ly we oabtnin 1n seconds

Cmrsingy L 2D g apy e
¢

+o ""‘:f“'" @£+ 15y~ 5 1, (Fosan
We designate:
¢ =sinB
€ ;-!‘-"—-.;‘“—B(l+3~q' +218 ' (e, )

€= .L.‘l!.!"&‘.“_(z_‘-+ 1559 — 1552 %)
. P

then:
el +6P 4ol (8. 2.)
Formula (8,35) by its construction coincides with formulus (8.12). All of them
iire convenient for nonlogarithmic calculation with tables of coefficients o, b und ¢,
In resolution of inverse problem of prejection y can be expressed as o wiction
of wrld coordinates (x, y). From small right-angle triangle PFP" (Fig. 8t), whose

cldes nre elementary arcs of wmeridian and parallels, we obtain:

" ,
g ..'-':.-f-- :‘;’-. ' (8.31)
[
From (8,191):
{--v%‘+v‘%+v‘%+---.
-:—-3‘.-’+r'-:-',i+v‘-2—;+---

Conscquently,

YRS

e

B

e

ot

Ly i

S




o

or, crousblering {h.00") we ubtain

gyt reaety .

L gy - A ; -
'b, "”‘”.U"i‘s.""l'
Sy y | ¥ Sog »] L A
: el R A (R R LT
LI e, L] Y )
rreaging down Tast factor wlth negative power by binomial theorem and retaining
wrdy the tepme wie) g.'I y wWe b tein
z 2t W W
_. o B (3 B)
. [N ay b, .
Y L A
' : € M B wn Jl
- = " . 1 ' [ ' v v i
substituting vilues o My gy By, b, by from (8,24), we obtaln
- to f 2 4 %y 7 2 0 ¥, A7
gy = = 0w B e U 30y | S
Changlng trom tangent to ungle by the formula (8.33), we ohtaln:
Ty (=2 +
“.“ 3”: [ L] V!
t .
+ S @450+ U+ 2Ll )y (6.38)
L]
) sign "o meuns that corresponding vislues pertain to latitude ot the bage or
: crdinite y, We designate:
.
: q-;%.
' ‘;-'—_!L‘l'*‘"’-""?'k‘)-
. ._\-: [ ()
.o b
‘;'-i;;t—(z+5¢3+313+3n3+n319.
: 2 thens
1
e %,: DR A A TR ENCRN

Formula (8.39) is applicable In resolution of inverse problem of proJjecilon,
but !n itg resolution we at first determine W and L by x and y, therelore y cun be
c¢alculated by (8.3%) after calculation of B and 1. This approach is recommerded vy

D, A, Larin in "Tables for Gauss-Kruger coordinates.” With sueh procedure pecessity

'
for tables for Cy» c.; and c:), Is elimlnated, thile leads to decrease in valime ot
tables. However it must be borne in mind that in this case ull errors in determlnation
of Rand t wlll in the corresponding munner reflect on determination ot y - there

will be no control, Therel'ore it is expedlent to preserve independence o

T O TN T
Fowai-r g 0 B e

-
- s
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credrestlon of B, 1oand vy in resolutiorn of inverze problem of prelecrion.  Hore tulsn

1 ] 1
STRTIREY. o ry to sdditlonslly place tables for o, ¢, #nd o, brta "farlen o

taas=deger ad D, A, Lardn coordinates,

A ur

Causs convergence of meridians tables are necessary for transitica from nztxutil

cplven directlon on a0 elllpsold to grid azlmuth on -« plane,

.-‘-—"-—‘ (,‘. R
4--+x+t} B

4. Bcale of Image

Let uc ugsume that de is lineal element on an elllipzold, und d2 — on plane, ti

senle ol image is:

-8 5.0
me= . . (3.41)

llence:

ao _wser o )G

* i 'I 1] 2]
B 2]
(dq? + dt?) 2 1 C‘"
On ellipsold:
A--
] o,

the refore:

@@ e

From (8,12)
%-M+w+ ..

AL LT R
Retalning small values to 14,

(%'_)’-ugp+|eap,ﬂ+ ce
(L) =on 400,54 10000 10004 L L.

Consequently,

n'--{l+ (4--+s..)r+(m£:-;‘-+m-:f +9-§:—)l‘ }

Substituting values by, bB' b5, a5 8y {by 8.17') in expression for m2, we have:

§ R R ook 3 DO 0 -.zmqmm

il R

aik et red




mie 14 VicodBR4 Eal-”(?_".’. 53 — I I

Wit e same acenpacy alter extraction of aqiore root by omeans of feetorization

o ticeninul series by the troradla

—_ x Fi
)/I+x-l+-;-7+ ce

we obbtain:

n-l+———= hp, o "( —AH M=+ L L. (8.42)

3

Y lal
Woere b /060 b - Y epns witn 0 in (H.42) are neglligibly small. tor

Instance:

“‘”(lh‘ —282 <1107

Lropping terms with n° in (8,42), we obtain:

V'an'ﬂ

melt e —‘3;-}9(5—4:')1‘+ .. (&,43)

Designatings

cos* B
d.—-—’—--V'.
d----—-(»—--il').

we t'inully hrve:

m=l AP 4l + .., (¥
For eileulation by formula (8.44) {t ig necessary to huve tables for d,, and r.iq
by arpument ot latitude k.,

Tn practive Lhe mare commenly used is Lhe scnle formuln sic 2 thnefion or

Guuss-Kruger grid coordiuntes.

o o )
For cbtalning the shown rormula let us express in (8.43) ¢ and z” hy n“ and y‘

hy means of (K, 26) when

AL

(‘:‘.‘!.ll:)
o YN8 L
"
turther, omitting detalls ot calculations:
eon-_.u-s.(|+-"—‘—+ .. ) _
L . {8.403)

V;+¢':‘f3+...

Substituting (8.45) and (8.46) in (8.43) and dropplng terms wlth quu. we obtuln:

«230-




-

vl e
mowlp —— e . L
N
oy
L oem = ==, trierefore with uccepled accuracy
iy
[ o
metgt g oy
w] | axl (8,47}

Slen "0" ns before means tiiat these values pertain to latitude of base ot

ordinate y,  tor symmebtry we designate

tlen:

mel+d B A0S L (f.43)

In conclusion ol paragraph we glve summary of forwu.las for rezolution of inverce

problem of Gauss-Kruger projection.

Direct problem, Gilven: B, 1 and A; determine x, y, & anl m:

1. xmX+tal 4ol ol
YA RN AN
L me)pdpdpf

. {5.50)

Inverse problem: Given x, y, ¢; determine B, 1, y and m:

1. BB+, Ly + o
2= by + b+ 80
3 7-"""“‘;”"*";”‘
L=l ydt4dy

{8.51)

Formulas (8,50) and (8.51) are symmetric with respect to 1 and y and are very

convenlient for nonlogarithmic calculation., Tables for caleulation of Gauss~Kruger

coordinites must contain coefficients of these formulas, depending on latlitude.

Coordinates are calculated with accuracy of up to one millimeter, latitudes and

longitudes up to 0O'0001, and y up to 0Y001, Scale of image is calculated for one

unit of eighth decimal place. Such accuracy of calculations are ensured both by

reduced formulas (8,50) and (8.51), and by existing tables,

§ 45, REDUCTION PROBLEM OF GAUSS-KRUGER PROJECTION
Neduct.ion problem 1s understond to be translation of distances and directions

f'rom ellipsoid to a plane, Reduction of distances consiats of finding the dif'f'erence

of the length of geodesic and chord of image of geodeslc, connecting two sdjacent

points of triangulation. Reductlion of directions consists of determination of

231~
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H
-

correction for ciurvature ot contformnal imuge of geodesic on u plane, Arter Lntroduae! i
of these reductions in meusurad values we obtaln o triangalution network, reduced
Urom ebbipsold v 0 plane,

In order to tave clear concept about the reductlen values, we will rirst find
thelr approximute analytic expressions and numericnal characteristics. Let us assume
Lt s bel'ore do Is the element O are ol geodesic on a spheroid; di5 1s the Lmuge

ds on & plane, tlien:

-"‘—:?' when ‘S-.g's'
whenee:
L
S-IM&
- sCale of lmage, whilch Is the function of coordinates of = given point,
Vitlue of scale changes from point to polnt, this chnng'e in small sectlons is

comprratively small and quite pepular,  Therefore on the basis of Lependre theoren

oh mean values we oan accept:

Swms, (8.19)
where m, 1s the value of a scale at a certaln point, intermedinte between glven ones,
In our case, knowlng tLbe character of change m, we can take m for medilun polut or

for polnt, with mean jatitade l:r" The 1ater ls convenlent. oy practic:l applicatlog,

Ly (8.47)

.—-—-—.'
ll-l-l-—z—“. + TR

in accordunce with above we can take:

ﬂ,-|+-‘!’.%'+ T (H.(‘l,)
"

vam BZh

is Gausslan curvature at a point of mean-latitude,

Froles

From {8.52) and (8.53): o
swl(l -:4—:—) ’ (H.‘_)’;")

Formula (8.52') is approximate und gives muin term of reductlon of dliutances,

oo oo - “"’w N T

» N
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G = e

[

]

PRREHY -—% 1 the value of llinear distortion off o given Vine, UHhere ¥ - DO I,
. oo {vatue of ordtnate bo o sixedegree sone it sadpe 0F Sene b meitn lutltoded

and the length of a slle of 1at order triangulation) and hm = OIDY K,

ny:_ 0 410" 3

= a5 16 u
sy a.6i.e4.100 2.6 '

AS =

1
D000

From this esleulabion {1t tollows that linenr distortlon ot the edpe of the dene

or L orelative form -/\73 o

s s uitRowe & R GATTaraT

In Gnuce<Rruger profection 1s sieelflemt enough, Lo mnke (L necesnnpey 1o Lot podgiuee

FTE RTE art

carrections not only In lengths ot Inltinl sldes of triangulation ot nll cluangey,

but aiso Ir lenptho of polygonametry and even theadolite movementa, g
Let ne nasume that ARCD 1o amell eapesold, formd by peodestes onoan el el :
(i, B7); AgiyCyDhy 1o Ltn fmape an o plane (Fig, 88}, We will untte peint Cy ot T :
by chord d, and angles between sare Dyvty td }

r ¢ a A chord nt. points !)1 v (?1 will be dealpnated '
by h1 and h2 carrecaspondlngly, then: ;
b AB, wxy—x; BC,my;: AD, =y, ! ' )
a4 ? & &
Sum of the anples of gapheroldnl teaperelid
RV Fig, 88, ARCD 1g equal (300 4 £), where € 1o spherien) ;
excegs of Lhias tigure; the sum of ungles In .
plane flpure “1"101“1 18 equal to (360 + bi + b?), By conditlion of contormity :
200 4 0w 360 + 3, + & X
Connedquent.ly, %
1l b, i
Ity !
l-'%.'"o
I' = nre of traperold A,B,C,D,, equali o
’-(‘l_‘l)'n%!"o
thinretore: ‘
.‘*“.‘. s + ”» ) I
'Ekmﬁhﬂh W b
oMl ’

w233
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g b Mot Y

b
" x
> bbby =y —';T"LVM
L TH A SR
L /N
,.- [’} .
ey s, oand In preceding erpressions (L 1g necegunry Lo anderatand thelry
dboolute vadae,
: tonsldering L, and hooan corrsetions and Laking approximately 6« b b, we
[} l)'.-‘llhl
. Ry == 14} ;
'n’"-‘-”—k—.-l [ ((Ll,l})
Whtnrre Y ou 200 KM, 2y~ 2, mn X0 £a'ond R = 6400 xcu
Y TLLIE TS e
A R
Thus, the qmean value of reduction of dlrection al the edpe of glx=degres zone
tn e order trhagpsutlation Lo legs Lhan (0",
Arter tnege preliminarey ontonlatlon? let ug tarn Lo dertvatlon ot farmilyg tor
ealenlation of reduction of directiong and lengtie,
1. Derlvsotion of Formulan f'or Keduetlon of Dlatanees
Let, s agoume that in Fig, A1H1 fo nn lmage o geodetle are on o plane;
= chord, gubtending Lhila neeg boon xn angle betweon chiord ard tnlttal clement of
", 1 . .
ure Ailﬁ' thene
- 8 d= feosdds.
" .
Acvording to precedlng ealevd con, Byax 8 leag than 15", therefore:
¢ ottty .,
P . [] 4 .
]
Wit e1ror in value of e {t i@ posalble 1o Lake vaps b = 3, Lhens
H )
4290
A ,
: dm Y,
I'te.
8(1l

Thia i u very lmportant derivatlon, showlng thai where digtnncen are on

the order of u gide of 1y ordarlbrinngulnhlon dirference d = 4 ¢an be
disregnrded in nny precloe coaleulations,

From (8,44)

1

(H.‘l',n)
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i
'J
43
- W
, 7
' fpom (R,U47) for enrrent point with ordinate y: é
»
e :
o o —Z— R' o — SR g
3
ar g
i Ll Fooaaes ey
L IR T A (B, :
" 2R s
R and y prrtain to current point whose latitude le R, %
3:
; Wee inve: :
H z
U iR | 4(8 - B)) .
a"' -+ (8—B8)) “( )+ o "Ff("""v‘f""‘"‘)
whepe!
i
. 8B izt .
. M i
Lheroelores :
i
-.---[: w_—_-u.,- ] (&.57) :
Further: é
i
Ko X, 4 Seosm, | 8 .4 :
o0+ Sine, | (8.%8) %

tubstitutlng (8.57) ang (8.58) an (8.8A), we obtain: f

1 -.IM,:;""!! (1 - ‘s:"‘ﬁuu.).

ort

Loy Sk o S, 4 S, - (B.59)

whare:

-~i|.
hwl K

‘.-—-!.'-‘.::.'.

4-ﬂ!£$31wfn

ﬁ. - - %-}-Mﬂé&ﬂ “'.
s | ~- + lln‘l'nu. “ " J

*l

o'? 0oe® B, and sign "4" peans thot these values pertain

. ' (3. 60)

lere t, = tg By, nie

Lo Latitude Bl.
Substltuting (8.59) in (8.55) and integrating term by term from O to &, we oblalnt




sesherfenfend) ERED

bormualsn (8001) cin be cotalned By osomewhar dlfrerent means From (8,51 In the

tfollowing munner:

tor bntuisl point where $w=0, L-ak.
L]

o ’ . S Sy S ] 3 3‘
for meainn point where S-?. .—.-A.-{. 1‘..2.4.),_‘-.,.

> (8.".;:')
+h3
for tintte point where 3-8,3_'_._.k,+lls+k.8'+l’,8’.
my

Lehive

S/l 4 |

Som e fe —— — ot
.$(l!.+‘-.+n.' (8 1.)

Substitutling values =

. Loang from (8,62) in (B.61'), we again obtain (8,61),
g™ My Mo

Farmula (8.01') can be obtained by (8.47), by passing calculation

of coefficlents
ko, k:l’ k

o k3, i.e., proceeding from (8.61'), considering that:

b B
=t
i, B N
P L N . .G
m, +“,.+.m: (8.63)

n, "
T BRI .. N
St !

Substituting vnlue Koe Ky ko kg in (8.61) und replacing in them:

Sllllﬁ - ,"””ln SCOSI. - X,--x‘.
we obtaln:

smslie Hitnn+n +u.-s.m!+=v.v,+u:u{h}
)

If however R1 is replaced by Rm by the formula:

(8.ch)

;',--3'7_[: ..._'.&'-'-_'ﬁ..,,,,}

we obtain:

._s[l_(v?-n:;.'u‘.') +¢-.-x.‘;g{-vb "’"l' | (8.65)

Thls formula possesses high accuracy and can be used for $ s T km and y % 200 K,

In practice such cases rarely occur; for usual sides of triasngulation thle forrula
should be simplified, ‘

=23
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Where Xp = Xy = 40 km, y, - ¥y = 30 Kkm, Yy o= 2h, ¥

” ;" . q » . -—
A= 0T, fin = Do, o=
< m

L3
4

E3 b Ll end term of formuls (8,465) is less Limn O,

mwn,  inerelore for asaal
slués o) Pirst-order triangulation, l.e,, where s = 20«2% km formula (8,05) abould
b used in the torm: f 1 \ :
s-‘-’.l“‘;ﬁ;m"'y'y""y;)l (P,,nl'.)
or, considering that:

]
LA L LU TV P ey

", Ay ,
S-s(l+ -’—k-i--.--———z”\':) (ﬂlv?\
ar:
1S o lgs+ —"py? 4 .- 2 Ay f. 08
¢ 2%, ba LI Y (f.08)
Designate:
' ty, - vt 'g
"nl-:"'": km--!"—'-_—; lﬂ"‘t-‘.'—-
2?2, =®: ;L
Lhen trom (8,061')
RS =lgs+ -igm, + dlgmL + g m). (8.59)

Fformula (8.69) posaesses both high accuracy, and convenience for calculations,
but in practice formula (8.68) is applied more frequently, For 2nd order triungulation

und lower it 1s recommended thLat the following formula be used:
2 [ Vm
igd=lgs+ (ﬁ). (8.70)

For introduction of corrections to sides of polygonmeteric movemenis following

formula should be used:

AS= S (8.71)

w‘
y2
where A5 « correction, S — lungth of side of movement, Value of is usually given
2R

in tables by argument Yt

2. Reduction of Directions
In transition from ellipeoid on a plane geodesics, connecting points of support
of nets on an ellipsoid, are depicted by curves, angles among them, by condition of

contormity, are preserved., However on a plane geodetic nets are formed by chords of

w237 -
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Imuges of gevivsics, for thic Lt e necescary te rarctuce I encl drection

it
- correction ror tradiclition fram an are o o chord,  eede corrvections, or reduct fons

nmerically sre cqual Lo snzles hetesop sre and thord, sublending i, and are enlled

&
- Liwe correetions Yor carvatare of Lo Jugre of o peoddesie onounoplane,
At euch poldnt o oa Gnass-Krnger plane intinitesimal element of geodeslc, when
how 3y equality nns »onlace,
= A - (8.72)
Y e gria ol on oo plane, Al ¢ azimuth on an ellipsoid and Yy is
convergencr ol merisians on oo oplane (Fiz, 20},
For two adfacent poluts trom (8,.72)
s=h—n } (8.73)
Sy A=y
Benees
G- m A=A~y — )
or:
de = dA—ds. (8.74)
1t 1s known thnt:
dA = dlsin B, (8.75)
By third formula (8.72)
dymedi4dod+ 304 ., , (R.70)
Coerrticlents vq0 cj anud ¢, ure functlone of latltude, where v and e, change
80 slowly with change ot latiiude that In (8,76) they can be taken for constunls
and o term with 1¥ can in general be dropped, Substituting (8.7%5) and (8.76) in
(5.74) and remempbering that ¢y = sin B, we obtain
¢
) . da = —lcos BdB — Psin Beo B(1 + ) dl. (B.o700)
ﬁj Geodetlc coordinates B and { are function of grid, therefore:
oy i :
t
' '-3(3.VL¢3-—'£—#+—:-:-“

: K . (8.76")
T=l(x, p) 4’-~;dx+~;dv

Determine dB and dl from (8.76") and substitute them in (8.7f'). It ls known
that:

g uE A

‘o e

<t -..—-?-—?@“‘:'ﬁ-w”,— el e




-l Wy
i . (5.77)
: Al 2L
r t
dubstitoting (8.77) in (8.74'), we obtain: i
§
+
‘.--ﬁ'ﬁ.’:'_dg.*.'."_;.ﬂ“y_ ..’.'_’_'."_E”lﬁ”_”!.“_{..:g,‘t)dl_ i"
Approaximation: 1%
—— ’” i
I= e ™ Wews P
Lheretore: .
dum o B2 o S B 1+ 30 dy

or 2
du-—%—-’%ﬂ-‘!.
: i
Last term is a small value of third order, therefore In it R3 = Nj, can be §
taken, Lhen: .
dom Sl _ Bl (6.78) !

Fquation (8.78) is justified for any point on a plene. 1In 1t term with y3 in
not considered, it changes so slowly that in integratiorn (8.78) it can be taken for

@ constont and conslidered only in the final formula., Consequently, for determination

SBARD ISt

o
.

of anualytic expression of correction for curvature it 1s necessary to integrate ! ;

e,

dirferential equation {8.78).
lor integration (8.78) let us consider two points on a plane with rocrdinates
(xi, yi) and (xe, yz); where distance between them is ¢ (Fig. 91),

1 Degree of curvature at current point is equal to:

] du
i (8.79)

Let us assume that the origin of coordinates will be point

Pi; axis of abscissas will be directed along the chord, and uxis

of ordinates, perpendicular to the chord, We will designote new

&)
) coordinates by p and ¢. In thia system of coordinates:
Fig., 91, oS
g e
[ 4 3
[+(3)T
-239-
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In our selection of coordinates %3 ot o, The acuteness of xn angle ! 1t enn

Le vaken that tg o= 4, then %{ coh,

ca

Cougequently,

LN (8.80)

Considering (9.79), (8.80) and (8.78), we obtain:

S da _da v dx gaa, B (&, 8
PR R e ™Y R dp Wl 5 (8.51)
Let us express 4; by -1‘-g by formml-:
R’ Ry
U I T A I it
R‘- “%(l r !ul‘). (H.bé}

Further:

X x, 4 peosu,; -:-:— - cosa, ’

(8.87)
\ Pl
¥= 4+ psineg; —i’--sint.
Substituting (8.82), (8.83) in (8.81), we obtain:
._.:_"!....A;.;-a;p + b, ' (8.81)
wheros
wse ot ae sine
*l- ] ) §
e T A
, dine R
bl ;?" + ";' L (sin&, ~ coste,) . (8.841)
. )
o Db in «,(sinta, — 2costx,)
L
‘Integrals (8.84) are equul:
—i- M —.;—- .‘j.
o br+ il 3 P, (8.80)

o N ky
_,_..L,-+-.'-r+-.-;—p‘+m+c.-

1 t
At point Pi’ where p = 0, ‘3‘3 - tg 51 = bi; at point Pa, where p = g, g—g = LE t’:z_, .

= & Further, where p = O and q = O from (8,3%) it follows:

2'

amo T e

] .
Let us resolve equation (8.8%) fur point P,‘,, l.e,, pmwsg==d, q=0, thent
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e e e e s

&y
,n*;!—"- i.+-'!"s‘_3|-

o3
O-k;--+ "s'+ -—---8,:

¢

A T SIVERTAS PR O B
- ™ .
s 3+ -3 .i!,'.

l.-._"_s+ ..‘L;L*...ﬁ.
4 3 4
R ' 1 ' )
Tiber luuning valuen of coefticlente k., lf.j. L, brom (HL0TY, we o e

. (o200 +92) W Hxy =2 Uy - 9y) + ' x
' ox? an! er
x‘”’—yg)(a.” + ley, + y;)
- £ w
‘l"‘!"‘“—:"‘(ya"l‘zﬂt)" 3% {xs— )" (5 + )+ ! SR
i
+ ':':T("’ — 0, + 29,9, + 33
»"'(x - i
I tformulas (ti,éi’r) termn -——-—-—r— ot concldered, wiich, althows. smadl,
L

hag order approximately the same as the lust Lerms (8.87). Consldering thils ferm

qd chinngling Trom h‘1 to Rm by frormula:

1 ! 20 (xy — 2))

MUY SRR L R Y

&l "n:.( T, )
wee ol teds

Gy +yy) ,, ¥ty —2)

': - ””
¢R:, 6RY, Pt
LWl Py O g =)
R ——————————— Ao 'y -
+p ) -, Y ;
.
Bty L, w g—x) ’"-'ns,l,, * (#.088)
o7, wsy, "=
X(xg— X2y, + " :"‘ (0~ 9IS + 29,0,+303)

Formulas (8,88) poasess high accuracy and can be recommended tfor preelae
cnlealtiony,  Where vy 5 200 km and 8 40«50 km errors In ?)1 i h? are less than
arooot,

Contenporary sclhieme 1'or the developmenl of 1gl order telaneilation fo ik
antlede e constructlon of Lriangles with sldes PO ke, For thils seheme of
trlonpublatton roemilos (8,88) can be somewhnt slmptitied, Tel v oxpress SR il i n
by Yo by tormalass

hete— AL, pepit SL 1 - s+ AL

& A
Yermo with x q,,l and Ay q‘r"n due to thelr smullness Ln geners! o be dreoppeny
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wem Al | SR

v s (e ey e et b rediet o o abrvections b Yo ceder trisegtalat fon,

: Cort e b e e T e e v - ondd Ly shopliriad, Loanely, Lo drop
N B 2 e IR R S SO B R F A R T SRR I A RN O
b w g 12200 -_.-.‘.n.)
L P R' Ym A .
, (v,
3y — & .
‘--—v"" ! (y.. Ay
e Tere eweet eaterdbst oo ared Lo Ced o order el Don tornate for
b et o o redocttone ot directjone ghaygld be o uaed Lo thie foltowiogr toren
b hihe (5 0
IVARNTENS FENE ETE I FRITR A BICH KIV RN RRRUTIFR RTH (-",--"-) st {(E,80) approsteate x oot v
; Peaaianed, et o deternine e pecesgary neetraey off approxiante cosedineies, o e
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dAx - dy - dr
» M.MR:
o v+ 83}

Lot di s 07,001, g o= 200 Kn, Ax -: 30 am, t0:0N0

oy
a2 = —Ll'—'—..‘—’—"’g...!._. ")"’Q]J 'R

2. 10923 - 10 n
Conaedgqaently, ror enlenlttion off reducetion of distimees and direetton, o 10t

rder Priarenls Pror prid coerdinales must Le Rnown With secnpacy of o e aoce

Colealnted vy the Pormulas (8,.80) reductions ure subbrseted fram pmiven dbeeaer jons,
In teenglation of triangle t'rom ellipsold tao o plane, eedaction bo Inbrobeed fond
et tiggle cqanl to difference of reductions ffor corregcpondliue dirvecticnes the ooom
A ormined Ton of aneles of

¢
L3

2 triangle must be equal to its spherical exeoesn, Taken wilh

revert e o,

" " 1]
[ podactton of anples is deslenated by r,o r., and r.s Lhen tin Dottt od
condition will be expressed by equation:
> - (] » o
"+”+"-—.- "{o‘)”)

11 on o plame we have adjuslted net o irfanpgatation, then, lefroduce by fnte
ad i ted plane anpleos reductions with reverse slen, we obtaln colluonted dagnlmn on an
clivpaold, Mhta elreumgtanes makes 1t posstible to pans Crom cetlasted pels one s
plame 1o cormrespondlng nets on an elilpasetd and caonversely,

$ipn N RECT AND LRVERSE GEODIETLC PROBLEMS WML QA=K RUGE K
COORDINATES ON AN FLLITESOID

T prwbd!nn paragraphs nceepted acheme was presented o Dreneiton rrom o
ellipsold to n plane, when geouete network la flret reduced on n plane, and arter
Tt adnetments are made plane coordlnates are ealoulated.  However otz Py ey
coomtlnaten oan he enleulated by plven elements on an ellipuold, by posialig 1he
roduction tlapro, i certaln engey auch o way off eanleulating Jo more expallent, rfop
Inatanee, when Lrlwnﬁnluhlon I ndjunted on u surtace of a reterenceerllipoold,

this ¢on be done 'n 4at order triungulntion,

1, Direct 'roblen

Lottt take plven GoaugpeKrnger coordinntes Xgo ¥y ol polut. P1 (bl oy peodeste

are P:I",, e g dlrcettonal ungle on an elllpaold, 14 1o requlired (o enfoalale by

theae dotg o G- ngaeKruger coordinates point Pe(xp' yp) nnd baek grld sy lmit.,
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ealenlettan by the tommlag (B,000) would be very stuple,

O lnverse Provlem

tur

Lwo

e vanediaaies of

Porart o b

Se e
[ A

: ta resobatfon of fhverss problem Ganga=Kripger cocrdingte: apre siven
pavies '.l el e (Bl ) B S requitleed o fhnd dbsbiiers bt keen Nhem
. i
poeodente and preeld o lmuthe 'l‘,l and b,
Lerminale spe ppiven, PEota experdtient Lo obrabe Popm s winh
mean arpumenls, e,y to Introdeer conpdinnien
m
j \ . .
AV Y (e 0 yaYe Hden fop derlyat ton ot
/] LT ' i vt
1 e lagrongs Poo haty whibets et aaed Dy derlyat fon, o 0
| . rormebst Cor o reselat ton ot clbpeer and fnverse preodet e
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s atorheet Lo ook For difterencen x Xt Yo Ve Yo ST At

. plven foonbove Indlested book by Vo Ko Khelatov,e  Tonamieh a8 they de
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i fatnment vl value, dvopplog Chem, we will weibe Clanl formulon, rotadntog
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Ghement ot Ut bl Fer eeael o don of o aleeet prandess ey pertadns to

PRrbe o G0 drvers e protten; o taides Wilio e regairod, Jelvadatiag by

coemobeer (201 0, et (B0 101) et (BUE80) are nmernlo var g tens,

N7, cSACTRCR e A PLTCATECT vk AT Sei Rk
O N N

Ay reeent meoerbal of pecdet e peaniremet s of with, e exdeptive of

Pt oraer Uelame sl bon, ore wrneesmel L e predect Lo winis enTesdal Ton
CC ot ceordinst e of yertexed of control geodet fe networks,  In vertaln ennen

4w ot oerder trimmesdatlon T algo eorrled ovt on oo plane,

vor Ut o Tnt podue P o o thte prodeet bon b UK et experiones wan

wee bl tead, el oo peaetiee of applient fon oft danaseReger coord sty wan | ‘v"‘l:‘,‘.l

Cro e et e rrees Lo, Dk that thme ey snaxd Diney menns b e P el thivd,
cvent L P oo by pomep s and atherr were prepaved,  Prom LLese peoars b bl Lot
L

Weo wbll vite the mogt bmportant ot Them,

e e et et baly,
Fooo, h emeeyekdy and A, A, Deetoy, MEabten tor eparbtbande enealet ool
Coeebr e cvr bt vl o e Plmd e o bar brden L I TR S NN PRI R
Fe . Rrmrovekiyy T,
G " bes foe ealewlation o1 plane confores ] e conmlhieien witnd timdn
G It b tane e o e Y ! wpeannd g eat fong 1008, ape wempoded vnder dbeee bon ol
byoAy Lok,

N ' . .
PR o eiapet e cooragnten tor Do bmden 20V pe mat pop Lo el ror

[a) t

1 E
forget aeter Y e s Par f-’- prel tabten ot dlmennlons of Feamer el arens el beepe iy

O Ve a0 n'-.---;;.'.." 38, e sesponcd deder G peeton ol AL H, Vitovers,
HoooA, 1L ¥t revets, M ep rop cospt e tion aft feamei o Peapeeobdy of
tuporraphiie gurveyn for sealen ot Jronod and gm0 Rensovakty BV bpsctdy edd
Sy A Vieovetu and b B Bedblnovieh,  MMatles Pop cciiverrion aft prdd
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19 .3, |
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Tis work cont:ins many tohler  od exumples f'or resolution of ¢olenlntdogy
4 problems of apheroitic geodesy wilh: the help of computing aaching, including il
proteers, connected with applieatlon of duusgekraeer coordinates rop ot indes hat!

te 0 Iy the work consfderatle spaee {5 ooccupled Ly tables f'or conversfon of

g
i
|

goord L ber frop ane sone ta sunther by vaelous termilag,

o] Germens Poagtigeen,

)ebomnt bess of Cabler ave componed Lo leestan, gl :
.. 1, b b, Eeanovakly mud A, A Jaatov Tueles g
! Tablen, Intersdnd for loparttimic ealemintiont are compogec at two groupn of ;’
o farmeilag, 30 d4fMferanco of lenglindes 1 1g greater than 1“‘ml. rorantleyg o the '1rst ?
P are pecoimended s :
sint = sinfcos b %
gty w lgtglsin s + () u"
hm-@w“+«w" ' TRITIL %
Ryl (5" )+ Flem ‘
tote~ X o lg(Hrwd) + ou !
o X (xo=X) :
i
* Vatwen (2), (4), (ﬂ) and {8 cee fanettone of tntitude, and thalp  Lopar! Lhimn %
nre priven tn Labley in one degree, ) ; |
o romeiine (H,400) for w1l latltudea off the WK give high neenpeavy amnd vreror of i
é erleutatdonn o coordinaten x, y do not exeeed 2 mm, snd eonvergonde af merldinng §
; ot i plane = 0laod,  However thefr deflelency tu {n the fact thatl 10 in neenaanrey ?
é ta dent with lopartohime of sines and tangentn of aneute ungles,  Recommenantions
. glven o tablep vemove thig deflelency Lo noslpnitieant degreo, ﬂ
: 10 the dlrference of longltudes 1 in leas than 1“30'. Lhen following nlmplieled 1
3 fovmnian are yecormended! '
Y
i p--'fr fend H
Ky =lgp+(V)p
! . k".‘l'l'ﬂ.:"(v)f g (8.1“’5)
g (= X)m gL v p*
lgm = (1) 2,
aw X (2= X)

Lopgaritime of values (III), (IV) and ('V) ares given for Intitudes for o desprae,

1g (V1) = tor 10'. Vrluen X und g -'1" nre glven for every minute ot latitude, 1] rgt
‘\

IDapivation of formulas (8,104) 1o given by N, A, Urmuyev in “ipheroltie peodeny,”
IO WG, 49%%, p, 1065157, )
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=it ime-ters, ecera Be nioe decinnl paeints,
’ Cor ealealavion af peodetle coordinates by gl coordinaten two poronp off
" * vormalhn re recdidecnded,
X kit Lo removed from axlel mertalan reen 140 e 24 along Yoms! e,
;. ;' e, Pedbowisg formelag are pecomtstided:
. a:-—-:;'-:—y
lgm = 3), o7 (8), +"*
Igou-lgu;——g- g m ,
| . C(E100)
d Igimigosee B,
‘ Ietey = lgsine tg 8, £ @)
T 0T I BBy =l (5 0 10 L)~
B a By —(l), = b)
Lower slpen "™ means that correaponding volne pertains Lo Lot hde o= Iatihnde
G begie o aedinsde y, bs obtatned 4t op fo o condldered neoan osee o meridiag, Voluee
‘ ('-),, {'-\1. ('1)1 s (H':J are Punctions of latiticle F_ o bhely logarbtaue are glven o
tal Tegt o1 one -h-p_rw.’ With thege formulas unénown ot itndenr and loneitades e
cblabaed wlith secgesey off up ta OToa0, converpgenee of mepridbang Lo ool et e beney
vt e fappgtring b the @age as Lhal of formiinn (8,104),
110 lomeltide of polnts of axin) meridbmn being determined o Less Lhae 1“"“l.
Then Por eatealation of peodetie ¢oordinater almpliCled formota ave pecompen:doed:
gt w g (£ yrec 8,) (V1IN 1
: gy =gl sin B, — (VI1), 1
. O B bl T (1,407)
" lgm s (11,
Bw 8, (8~ b)
: : Vatues (100, (IVY,, (VD) and (VI11}, are runctions of Tatitame 1y, theldr
? : § logarithmg e glven in tanlen by negument Pj.
o 1. é! Cnleulation ol reduclions of aintances and directions hy tnablee in vecomme hded

\‘!
'

to be carpted ot by rormlsg (8,08) and (B HY), 0 For vonvendenee of aalenintione tiae

"
tabie plve L oodee g “by ond L R tor degres of Iatitude,
AR

: '*m 1

o N, Katovesity amd Ay A rotov Tabley enpure high scourncy of Leansbal bong off
peadet Lo control networks trom an ellipaold to o plupe nul conversely, Ty npe

provided with munerieal exemplen snd Lhe necegpnry explanatlont,




o e A, Larly Pabdes

Dables are Intewled for nonlopnrithmle coleulation or fousg-RKeraper conrdingten
and phevede Lie coordinales,

tar coleulstion of Snuss-Rruper coardinates by geodetic coordlpaten fae rollowiny
roreals e recorgended:

£—X a4 0,04 4 a’k,,
p-b‘l-{- b'l"-}-b'k., ("'~. 1oy
qomed 40,0 4 c'ky.

Av e e reen, formiies (RUIDH) eolncoldes with rformulas (B a0), e qirrorener

Teoondy In Lot terems, whitel In (8,100 Laye tie forng

.

& = a,(4 x 3600)%; b = b, (4 x 3600)%;

. —r
b= (4 x 2600)* ° ."'«xmom"
¢ = c,{4 % 3600,

In tables qve plven notural values of coettMelents o, iy h-j’ b, by sppiment
: ' ' 1 ) ’

ot Intlvude tor every minute and n , b snd ¢ for a degree; k., il ke e also Taken
t'ron tables by argument 1,

Formita (RLA08) can be npplicd ror dirterences of longliudes ta 49,

Restdes ndleated valuez, the tables contadn are of merldlans ¥ wlih nocoeaey or
e tooene plllimeter for ench minute of latitude, Coerflclent by = == can R oallows
to ealenlate the nre of parallel very simply:

"-blro
For ealonlation of geadetlc coordinates by x and y the followlnp Cormulng are

reoetttiony ety

By B om Agp 4 Ayl 4 LA, (#.100)
Lo pi(b, <+ B0t + B N

doner'tlelentn /‘\‘,,. A-‘+ are the pame, ap n;_,' and ”h' In formuing (8,61),  Pormuls
ror ¢ in converted Iin such a munner that it ls posalble to use value b, both for
direcet and Inverse problems, Coefficlents AE' Aq. bi’ }53 Nl ﬂ' nre functlons ot
lorbttde off 0 bnge of ordinnte, whleh ls deslgnated by Bf. in tamleu,
A g LHDT MieostB,,
& = 0, AN yecort B,

Nattipal vhlues A:.” Al& and Fj are glven “or every minute of' lutitude, l\' aned |4' -

"ar a depree,

~2hy-
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e

i 2t b propesed oot caopvergence of merfdiane cnor plane e calesdbnesd b uhied
£

Ceerocte {001 ) v octulindng, - cuer b, D sooult e constdersd derieieney of

-

2: L bery, e dninpendence disappesrs ror obtadninge these thoeee valbaes, 10 L

o better to apnly formalns rres (#.01) rfor culcealaiions, supplementingg 1he tanle by

- L ' ' ' .

oo Ten Yy vyl e I sabcequent editions,
+ .
3 Beduerion of dlstances and dleections shonld be caleuliated by the game Parsilas

e, Peasoverly and AL A Tzovov,  Tatles ave provicled witn

PR, fraey very nconie, ant exawples or conlonlations,

o AL et Tebleg pesolve the problen sel beeoive them with Biph degproe of
" secearaey, AR present they obtalned the preatest disceminatlon in peodetle wark In
. L Vo teling Lie most o economic,
A, i .sor A, M, Virovety Tubles
slrst et o tables contalns values off Gauss-Kruger coordlnates apd converyenes
cUomeridiang on oo plane of vertlees of angles of surveylng traperolds on o oseale of
11,000, and dimenslons of f'rames and areas of trapezolds on acales f'rom 1:10,000
Lo 320200, 000 Inclusively,
decotnd et ol tables are intended for 'nb(:.».lnln;: grid coordinates (x, ¥) vertlcen
o angles ol surveylng trapezolds on seales of 1312000 and 1190007 Iy Lhese tables
qve shown dlrec L1y and coordinates are not reduced, but they are compoged In such n
Wy that o with thelr help unknowr coordinnzes are founi very asimply,
Tableg on Iatlendes embrace ten belts of one million map: R, . by Gy Ny M, T,
B By J, 1y I Lheem are alse glvea diwenzlons of fromes aud sveny of teapezalds on s
deale ot 10000 el 13H000,
Ax 2he flrgr e, the gecond get of thlenvconhnins values, naing ftoem 1L s
possible Lo convert coordinates rom one zone Lo another with nceupncy sutflelent

for 1opographic work,

fhitg, tClrot vl gecond toablen of A, M, Virovetg are intended to encure applleation

of Jauss=Kruger projeccion nnd coordinates in‘Lopogrnphlc work of USSR,  PBaete
grvstiong of appllceation of plune goordinates are developed in them wlth definlte

sequence and necessury accuracy. Coordinates of vertexes of trupedolds are obtnined

wlth aeenracy of up Lo 0,2 m with these tables,
Exumples of treatment of triangulntlon on a plane In Gauss-Kruger coordinntes
sre given In "I'ractlcum on higher gecdesy™ (p., 83«87}, n 4 also In Krasevakly-Tzolov

‘fables (p. 07«40, examples IaV) and D, A, Larin (p, 7e10),

©250 -
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Vi topagrear ble maps, tor convenienee of thelr ute, 2t onorele, kilometeor gridn i
are drown with gliven lntervals dependlng upon purpose and cenle off e mogs, g
Filtometer el ond Prame can e dreawn sfmiltaneoss )y, L kRIlometer i e frawn, '
tren r'rom V1, by coordinates of vertlees of ungles of trapezoild 1t s posaitle 1o %
corpttraes s Peane, 110 however frime of' a troperold o toe bhe eonstructed, U-ern %
Uroes Trer (L is casy Lo csleslioe and constract tre KiTometer prebd, T80 00 Uraeee on i
slhheel Lo priven Ly 1laes o of “elasns and ordinates, then n necessity oo arfae Cor ?
Asterming jon on o plane of o onograptiic map or exils ol merldluny arel poralicets, i
Leesy incertion of priaticule on 1 prld,  ror reselation of thle problen seidis fone) %
corlen’]at fons and construclion are required, %
Lot ug agsume that Flg, 94 deplets a gheet. of Lopographle map, mrld voardinates ;
o alent carners are glven, it ls required Lo rind grid coordinates of points r1. F?. :
Hj and H? by geodetic coonrdinnles B :nd L, For determluntion ?
’ ] £ cof coordinates of points F1 and FP longitude 1 meridlan Pl FQ ;
“ and abscliassa of lines AD and RC are used. Consldering nhsclasn Y %
Liradieg 6 ' of lire AD the are of meridian from eguntor to n given polnt, i
we I'Ind from tables of A, M, Virovels Intitude H1 of' polat Fj: é
having latltude Hi and 1, we determine ordlnate of point P1 hy i
) 4 the fore la:
Flge o, ]
' o geoss, [l ;---‘4‘-‘-'-5-(14-2; ] 18.110) , ,
i
t
lu-ll'ﬂ;—:'—!lﬂvmw. 8,110")
Farmula (i,410) is obtained from (8.26) by means of simple converslons, ?
Calenlabion by the formila (8.1417) is made by first or second A, M. Viravein tahlesn ;

depending upon the scale of' the map, By the formula (8.110) ordinate F9 is caloulater, . }

where 15 this case the latitude s calculated by absclssa of line IC.

For enleulation nf nhaclssa of point E1 we have latitude of parnlle) H1Hp nnd

ordlunte of western trame of the fraopezold, conseguently, we ean {'lnd lallinde of

the base ot ordlnnle “0 by the formulat

B= 8+ (#.111)




d :
5;_ aavings Litdnlde Bl owe Plad are ot merldian rrom tables, Toe,, nboeloarg ar pﬁh}
?, S Sntlar calestdntions are neeegsary tor fiedbop o abae o ko T tr yeeommraded
T L :
- Congetere e e more palnt oor paraltel o o Dagrnnee By o Bn oeder e s tier
' coaront e G b e, oboer B oesn be oiven Sre Tatitade Focond Terestrade, retnaded
N & - 1
: 4 ta T e Ly A M VirovieLs Labdes o we can Pl apseirea vl orpinat e ot tidts
; i, For eoleslation ot grid coordinntes or exlt o or meridlane ool peralleds, or
Peo smetera ], o points with artiorapey vilaes of geodetle coordinntes, in A, &, Virovets
el Ve e e e et ternal nl s o ddinionnd tablen, ror peirely tepopeand e
woere vy shotid bBe o the obly ores ot be o uased, Tnootner werds, the problew ol Tnsertlen
) ctoeratieite over prld o is whelly resolved with the belp ot A, M, Virvove! s ralder,
: They give Lhe values of convergence of meridiane for drawlng on oo g Tines, whonoe
) : oty are given, and with the [elp of tables of values m - 4 eun be rfound Liwe
Loty of Hnes on oan elld ‘:10151. by messured lenpths on mop and conversety,
Tt COLVERSTON CF COCRDINATENS PROM CONF 1o DNk
e pregence ot conrdinate soneg Lo spplication of Gunun-K}nﬂrr pos et fong
cvaker peesgslty for resoliutlon ot additionnl problem converslon ot grld ceordiasies
Pran one sente Lo anather,  Thin problem nest rreguently oceues L et lens of cones
U bmenn of various geodetle and Lopagraphle work,
fn Ural tr fs aeeepred that coordinaten off rolats of state geodetle netwerk,
_ Leverted b Moverlap, " are glven In the syutoms of fwo adfacent zenes,  "iverlap" of
: o, wlhthin whooe Mlmlts polnts bBayve cocrd’ os Lo sycless OF Lwe ones, siretcley
vy -T: llu Poned tade s o gystem of coordlnar , o' the wegtern nonw averlapd enrlern
. Loy *3' wlt Lot d tade, cdd @rate 1 overlape western by 7:5 (Fig, Hart
) : However the tndleated rule "or double" caleulatlon of ecortlnates doey no.
: vxebade mevesslly for speeial catenlations for converslen of coordlnatecst  “The
l rallowtng eares o converslon of ceordinates, are posgible rrom one slx-dogree Lo
¥ &
,: g' arother alaederrec, rom Lhirec-degree to threealugres, from six-deppee Lo threesdegree
) : % soney and converasely,
: . e
j? (¥ The slmpler way of resclutlon of the problem conslsts of convertlng e reodelic

courdbnates Prom geld coordinntes, and ealeulating grid coordlnntes from geodelle
coopdinates in ¢ system of desived zone, the problem 1s regsolved by these menn: with

any dealred slegree off aceuraey,

ey Y i
R A

Llee pole onp, ",

Lyt
R B AN

L e y
T Ay D N A 0

“2H2. ' : .

s




Sor o osmall ommber of polnts the Indiented method con he rally useral,

epever wliite o slyend Cleant gumber o points e appllest Tors o T me s od Leendr

ta tiheeennary cxpendltare of coalealatdng Labor, since Lere deabte tpanefiion Ie

actunlly necomplished, HNatuarally o necegalty ariaesg ror n development oY n method,
by eried coordineten {(x, v) I plven zone, coordinaten (x’. _y"p P syt om of
shobliaee Sone oan be dbree Oy ocalealoted,

Lot o bake spen=Keuper grid eoordinaten (v, y) nnd ('xl. _‘.’i\ Poo eye tome ot

ahiteont sones Por point U oo el psold with Isometrie ceordinates (a, L,

Cotptergent Ly

Xu.l'(q,l.)l. : ‘ (%1100
yenigl) |
l'-x"q".) . («“.11 2y
V=¥ b)

v I] I - l.‘_. ?.:, [, = I."‘. when l.(‘ and L'.; are h)»m'.‘!.u:h-:: ult axtat mertdiann o

'
tiay ol feeent zones,  DIfference (1.0 - LO) s nlways the gilven valued deslenanting Lo

by 1, we hhver

=i, (8,12h)
wxe luding from (8,440) snd (8.143) g and 1, we obtaln fanet fonal dependenee

ot woen aystems of pgrld conffornsl coordinntes, oe,,

£ - e i) |
V= hix ’

. (310

Fagunttons (H,115) in general form give foarmmlnn Por converalon of coordinn es
trom one gystem ta another,

Ppablem, thus, consists of deternining tunctiorn of 1‘1 and l“,\ nnd by dolng oo
tlndlne the formdan rfor thelr cateulation.  For resolutlon ot this prablem we wll]
Lutradues an nuxitiney polnt Po(xn, yﬂ) under Lhe condltion fhat:

surbdn xela ) (H,116)
(LI X XY Vo by(2e 0)

Consequeltly, nuxliliary point has coordinntea in second zone (xé. yé); Ax and
Ay huve Lhe npunl for two adjreent points of triangulation valuneus, l,e,, not more
than Moo=y ki,

Lol ua extend (8,115) in o series of ascending powere Ay,

We have

Meogta'dyda®SPpgaaps . ., ] (8.147)
Fobe WAy + P02 0" A4 ... |° o
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Cortrlelents o, v, = poeee by by 0 Lo e thons O X L e torm o't

(%] " " -'—--’!'- = -'. _!.’ ..
Svfilxi g dufilv ) o d ey P - -i,v‘!

L L LI I XIS PIYR P power oo pnoaneenading powert e, e g

. . @wmlyt o A 4o, A0 o, A 40, A 4 , L .
- a'-n;-{-a;ﬂx--}a;dx’+a,'Ax'+a;Ax‘+ .

l'-¢:+a;6x+a;u\x’+a;Ax’+u:.Ltl oy
" mol 4o 8x il agdxd fujdxd 4 L,

L3
-

Om ek b Ax i bAxd 10,380 4 b Axs.
b Bk 0BT B AN B A L b SN .
o byt b A B8N DA 4 818k | (+.420)
BT e by 78 L b AN | 8 Ax? ..,

Cubrt e g (00118 g (L100) 4y (e 317) and conatdorign 1 Ny X, and

t
. -- b, = ¥, wr chrain:

FEET NN ¥ 0 o AN a, B\ a,A4\"+u‘.\.\" o't u: R
A0 dad) Ay (ul I w a4
Ha +a)30)dpi .., (. 100)

V—y,mdy mb dx b Aax7) b Ax1 4 b Axt o (b 4 bdxq
+ b, x4 b, Ax)dy 4 (o] + bidx 4 VA +
+O, ALY . (1)

rormal ot e L 100, and b (2,400) and (K8.371) wre for converston of
coordinates rom one gsone to snother, PLfrerence between Lhese formalag tn in the
Faet teat the 1PIeae o are ealled formilag withe vartable coettielont g v WhBre speein)
Pl e mequi el for thelye apptlest bon, the second arc cnlbd formlar whlh
: ettt coet e fent g They nee conveilont o en et Tons with Lo sl or aompine pg,
To (S0017), (#,120) and (3,42) conditions ennnbig from (B.9) e applieside,

Wer v

. (15
. —-5‘—--'---+4U-—-+-U'——-+ e
u ay e +9n'49+30"‘dv'
 at LA VEC P 4B
S .
267 w b 4 2 dy+ab .\yl
at by condltlons
“l X
) ¥y’
“ .c—.i.
[ 1Y} &
=24 .
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tonnequentlys

o Y
PR PRIRAY SR | -
ox o
From (b, d38), (8.139) und (5,122) ensuess
b ma, a, =0,
b v 2, e, m - 2h,,
by Juiy, ayea 3,
2 =a), oy by e 200 ' (1
b -a, 2w -,
2, 3],  a] web,
b~ al, 5 - - iy,
W e ), D B )

fxpeasrionn (H,490) and (B,193) nhow, how the eoeffielents are tled among
trepeelven, tn stnen of (#,117), (H.100) and (4,971), They nee iy deternped,
t1 o sl boare plven,

Formalae (8,170) nnd (H,401) glve general expreaslon ror convernlon off gansns
Erpeor coordlinter Prom zone Lo zone,  They nve ton complirnted for practlenl une,
but contatn coordinateg of anxilinry point l‘o(x‘._‘. \yo) and with exprdlent. anlection,
aimple und conventent. for practicnl applleation formulag ean e obtained,

Lot g appnme that e x o or Ax = 0, ilion undepr Lhin condition from (4,10¢) and
{(#.101) we obthing

LRI N VR L LY oL S (4, 17%)
FEY R AYE A VLY o Y S b H,11

' L] 111} .
Cooertlelente u", b‘t Lw , vee)y RA B fantion of abipcinan x & x or
Q 0 [}

Lalitade 141. eorrepponding to x, I & 1s consldered ag an are of mertdlan, they can
] | .
be tubulated by avgument x or riﬂ. Auxiliary doordinates x(’, and Y, con be ealenlintoen

)
4

o nyel l'.l\‘

by general rormulng (8,42); they are glven in inbles slong with o

mitting detulils of computationn for obtainling né and h(’), which nre glven In

the mentioned work of V. K. Khristov (p. 215), we give thelr final values an Punetion
. . o , .

H.‘l 1

o, —nsin B, — WDy gt 4 gy

. B, alndieort 8,
o = MRS 4 gy 4 TEOZED Doy (5,17,)

-:'--A"ﬁhamn
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- 0y m | —2n3sin' B, —~ .'f'f.”; ACOT BT 33 i)

: . ncov B (1 4 5Y) at e, ) _

- e e Y (T 1 T) Sy bt
| by b“ Ny 1 &Ny i H \-'.-- .
! h o AVt A
b - - o ‘-l
i
¥ e Ve renee o Tom Phistes of ax ol omeeldlane of s acent soner, exproseed Ly

radian peariee,

oeprmeilan (3,117 Wit vartable corPrielents were fleat osed Sn P foge
vonverslon of dncszeaKruger grid coordinaten,” publivlod o 1240 ualng legnel
Dot

Preinelple ot consttraetbon of foemalan (B0150) with constant el tbe oty o
e tbed b Joint work of ProCemnoen A, M, Vipovers and byodi sabtpovienr " en
rer sonveralun of prld coortinatea, " (Ermrovekty FIOproba, My deadestilat, 4000),
P trate Eablea fepmsdlan tor ealealatbon kave the ferm of'y

nemXetaldy+8apt e (i, 1m)
Mmlydodytdaie ‘

Whoaped
Cm DAL EAY ¢y ue DA 4 B4

Ao Mo Vipovet: apd By R, Kabitnevienh stables copnlat of three papty, I-Il'niy phrt
caont alae vnluer oy o Xy, .-.1, b it vy | BAETE VAT T/TT TN xj [ RN PRI SH AT “'“_.u o'\v‘vn
polnty aocond and thled parte glve valung ot @ and "‘tl by nignont o Xy u»ml Ny,

A, M, Vievovets and By N, Badinoviel Tabdes are dotveenal it see aoefa) for
venverston of ceeribnates from sl vedegees sone to alxedepree Sone, el Uren GiXedeprye
too thorevesdeprer goned and canveraely,  Cadeataltionsg aree made wllh u‘xils'.;\lx'c'?' it tor
renobiation of vne problem approxtimately Loorequlered 45 minatee,  Converted voopdlnniaeg
have @rrar not geeater than O en, fully permlsalble for s} "mpnp,r-{;.l.lo and m'-r!-‘ln
grodetle work,  Where grest aecuraey bgopeguieed, fLeat methoad o vepodatjon of
congldered problem should te uped,  Pables are supplled with heeewsary explannd tone
and ehnmneterlvlte vxamplen for practieal puppotens,  brom olxedogrpee tone to Bl gardogpon

coordinaten npe converted hy meany o' conpecutive Lyantition, Cient to thpeecefogpen

zone, awl from three=degree to alxedegres tones,
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CHAPTER IX

SHORT SURVEY O} GEODESIC PROJECTIONS

R ek L

§ 50. GENERAL REMARKS

s e i e

Gruss-Kruger projection and coordinates are used in geadetle work ot USSR and
in majority of soclallet countries, in addltion, the practlical application of

. proJectlon in these countries 1s carried out as a single program and a scheme. At

2 o mo

present the geodetlc work of soclalist countries occuples consplcuous place In world
geodetle netivity., .If one were to consider that in the future the weight ol this
wovk.will he even greater, then it will be ciear that in time the coordinate syulenm
of Oauss-Kruger can be converted into a world system of grid coordinates. At present
no other system of griad coordinates has such wide application in geodetlc work.

llowever in many European, American and Africen countries other geodetle

projections are used, which have thelr cwn pecullarities., In order to objlectively

-3 Judge mnthematical, and geodetic merits and deflciencies of these projections and

ainly to compare them with Gauss=Kruger projectlon, 1t 1lg necessary to become bhrlefly

acquainted with their muthematical and geodetic bases,

e FORATL W 2 Eae

In selectlon or one or another projec*ion the geographic cnnfiguration of

giVen country, fhe wccuracy or geodetic and topograpbie work, the simplicity of
. mnthamntical baais of projection and convenience of its application are taken 1lnto
accounh._ No one projection can completely satisty all given requirements. howeverp .

»mnjorlty otused geodetic proJections t0 ¢ne degree or nnother satinry the maln .

.’conditions.” P S e L o
‘_' o A . " L I':_

Thﬂ mosl essential or tﬁem 1r ‘the confornilty of image, , Conformal projectlons
' SR VoL T S e :

v -




possess preclous properties for geodetic worre, they preserve simliarity In smnlil

parls of depicted figures, Therefore as time goes by less appllcation is found ror 4

T'?E nonconformal proJectlions,
R tieodetle projections can be determined by dirrerent methou( tat i nll cases v
_{4..... . . . % i ’
»-u? they have Lo gsatistry the Yollowing euuaninnq' : S : K
[ xm x(B, J|}' (9.1) ?
Pt y=y(e 0 i
o - ‘
©o wovre (X, y) tre grld voordinates in tie projectlon and (B, 1) are geoactic . ;
B & cuordinutes, The form of function of (4,1) in the end result aetermines the merits ;
t & : . ;
} i mud deticiencles of o given projection, therefore we will mailnhly consider iuesge :
a h N e . o
L functions for each projection, 4
i B et e = - e — . e e e
: f § 51, SOL'DNER PROJECTIONS AND COORDINATES *
L 3
§ S0l'dner coordinates in initial stage of development of higher geodesy and ]
? :

reodetle work played a definite role and were wldely used in Germany, ln France, und

g in prerevolutlonary Ruscia prior to adoption of Gauss~Nruger coordinaies In USSR, é

: é At present the Sol'dner projection and coordinates haye:only-historical value for g
; g USSR geodetle work, however in the west thee: coordinestes are satill used, ) %
. ; Furthermore, Sol'ldner projectlon presents certain methodlcal interest, ‘ ;
¥ i

During, applicution of Soltdner coordinates the Earth is assumed to be a gphere,

The surface of the sphere is divided by meridiane into coordirate zones of devermined

width, as in Gausse~Kruger projection. The central

e L A B 120 A et

merldian of the zone 19 the axlial meridiuu. Cneﬂdlﬁhté
lines in Sol'dner ysrem are greab o;rcles, pprpendiouxur
to axixl meridien, .und small ulrcles, parallel Lo axial
meridian, As absclssa ur certatn potnt Pi serves’ as are
of meridlan from equator ta baae of Qrdinate of this
point, ordinate of d&stance\alougbthe aro of ercat oirc]p
18 from axial meridian to 'a given point P .[Fig. 95) B .4":
N_ﬂ_ﬂ.!lm

TRyt Yot st et im0 b

i Lye abuciasaa{-@to;north,'pAaitive ord'nutes -
eustward and negative = westward from axial mbridiaﬁ._ Thua, the aystem of count_ of

Sol'dner coordinates iz similar to Gauss-Kruger coerdinates, © i - . j',; ‘\g- t'wﬂ M

In Fig, 95 following designations are made'A ¥ 13 dlltance between given polq&a~ -T_v Con

91 ‘and’ PQ; T1 and” TE are grid azimuths of urc 8.in- 1t ftniue points Pi und" oy g

arc of lmall eircle. parallel to axial merLdian.‘-.tf




Ler us asgume that R Is radlus of o sphere,

From triangle FiPEQ we have:

sin -h- u eos—sln L+ sin L o '!:'e- sinT,

&
in— . (9.2)
sin -‘-’ﬁ_u R cosT; - '
R m R - .m-{l»....-ﬂ-

Consldering %, -A% and % small values of Tirat order, trigonometric funvtlons of
Lthese values are set 1ln series and rewelin in them amall values to thivd oprder

tnelusively, from {9,2) without detailed caleculations we obiain

- wu?
h"!’s'i"" Ty .'I:'-—s—m—‘. (4. 4) -
':"'"H‘“'l -

RSN TR 7 % (AT K

Here u = 8 cos T, v =s ain T1'

g

Af'ter these preliminary remarks we will consider the 501'dner projection and
coordinates on a plane.
Let us assume that axlial meridian 1s depicted on & plane by straight Line by =

.1llre to fuil scale; great circlea) perpendicular to axlal meridian, wil) be deplicted

¢ e

by straight lires, perpendicular to image of axizl meridian on a plane and distant

cne 'rom the o+her by the value of the differeuce of adbscissas, Small circles, :
parallel to axial meridian, also will be deplcted by stralght lines, parallel to ; i
image of axial meridian and distant one from anotpér at a q1stance. ecusl to {
difference of their ordinates {Fig. 96). - ‘

With snch construction. obviously, »oordinates on a sphere and plane will be : i

equal, 1. e., we use spherical coordlnaces on a plane.

it our construction 1a viewed from the point of view of

image of sphere un a plane, then 1t is eaey. to notice.thnt the

projection is produced on a :y adrical surface, coinciding with

.the sphere. alpng the axiul meridian, Great circ;es. _perpendicular

'°’wo axiel: meridian. ere dapicted b rorming the cyllnder; small




st dx?4 2y (N.4) |
vron (9,%) by weang of sguaring and sdditlon we obialus

w’y t

Yy -»+v'+"’ St

wry cotsldering (9.4), we obtaln:

) )
: ' 1 . "‘-—-‘—'—g- — W___Vl . N
R M R [
1)
. ? dneond term of ripht side 1s small g compuared Lo irsl, Lierelore, wllhout
i ¥
! Z digtarbing, Lhe peneralization of reasoning, it can subgequently be dropped lower,
i
N then:
- — dm ﬁp__mm_._"__m______“m“*__ﬂﬁ___,“m_“_m_"
H 3--
8
? ; Ditference (EO ~ s) 1is small value of at least the second order, therefore in

denomin:tor of' right side we can take SO = g, then:

- den?
v LTt - L bt T B (‘3-'3)

3 2R

Formula (9.5) gives relutive linear distortlcn of Sol'dner projection; it shows
Lhnt. the proJection is noncontormal, since distortion depends on direclion, i.e,,

t'raom prid azimuth,

From (9.%) i1 follows also that the maximum distortion tukes place in the

direction of the uxls of abscissas; it Ls equal to:
y +
"'LT' (9.9

Let us find reduction ot directlon, Deslgnating directioral angle on the plune

) .
Lhrcuuh’ﬁ, from {9.3), af'ter simple conversiona, we lLinve wilh tormer accuracy:

%
W=7 ""':%" am'

Second term in the right part in parenthesea is small in Lompurison Lo rirst
o .M’wmmmmnu‘rmmmt* Lt Ao R I it SR

Dlopp'ng i, s+ obtain:

BT~ g7 =tk '3 T
ort

“.d*"ﬁ "ﬂ
mTicr, 0t

®7,




Hence:

. ll ' ?1‘“ L
S ',;~ . (9.7)

2
]
t
[}

In order to compare values of linear distortions and reduction of directions . — e

I, ol'dner and Gause-"ruger projections, we “ave:

Low'T 1
"- w z
' t
Clvicy (9.8) ¥
¢ ¢ )
L. §
o i .
1
L Lo »” g Sk
3
Bign z desib nates that corresponding values pert:=in to Sol'dner projevtlon. §
e — — . g . :
H

ard ¢ to Guuss-Kruger.
From formulas (9,8) 1t 1s simple to conclude that linear éistortions in Sol'dner
projection in general, are less than in the Gauss-Kruger projection, os:
v, myv c0f T,

llowever the great merit of Gauss-Krugey projection remains in the fact that

-

distortion in it does not depend on direction.

This advantage 1s revealed especially cleariy dur%ng work of materials of

polyronemeteric and theodolite runs. In Guuss«Kruger projection it is not necessary Z
to reduce angles of runs, and correction by the formula is introduced Into lengins %
ot sldes : ‘ 5
‘ ‘ ¢

As---’-:.-. % o

where ¥y can practically preserve the same value for all sides of runs and cven . 'Am;;

serles of runs., In Sol'dner projection, applying formula:

Atw

. . L

et
0

semblodf NSSSARARL 0. Soloulate corpention forevery Mne of arun, L
Reduction of directions in Sol'dner prejection in main term does not gepend on. )
distance between polnts, but depends on departure from axial meridian, unid in_vélua .
they slgnificantly exceed coriesponding values of raductions of Gauss-K}uner
projection. If one were to set a condition, 8o that in- Sol'dner projection no

correction ie 1ntroduced 1nto meaaurad angles of polygonometeric and tneodolite runsﬁ

L which hng a plnce in Ganaa-Kruger proJection, then {t 18 neceasury to slrnifican|1y :

\I.H

e




1imin tre width of coordlinate zenes (ln Lhls cuse they shonuld not exceed H0-i0 km).

Rith the increase of wldilh of zones to a shown 1imit a necesalty ariges ror

SRR

caleadarion ut splercldness o Foretlh and lobtroductios ot additionnl correction:,
iz conplicnates still more the applleation of Sol'dner projectlion urd coordinutes

e

} tor countries with great land areas, Therefore the Sol'daer projectlion in reierence
[RPOIR RN 3 .
bar Targe aress ylelds in 91) ratlos Lo the Causs-Kruger projection.
i ] .
i :
! § o, THI LAMBERT PROJECTLION
t

The Lamve et projection 1s a conlcal conformal projectlon, uzed LIn geodenle werk
In 'rance, United dtates and other countrles. The central llne of prolection ls u

standard parallel with a width B, Usually the slandurd parallel is chogen in sueh

L WG ST W 1 [PURp——— 2

s manner that it passes through the center of deplcted territory., It the scule ot

: g tie ipuge on thic parallel -ts—equal—to < urit; them The Froj8ctlon 1s ¢niled "conieal
' contornl jrojectlon with one standard parallel." It however the scale on two

i ]

- ]
! prrallels ts equal to a unlt, then the projectlon is c¢nlled "conleal contormal

projection with two standard parallels,"”

Let. us nssame that in Fig. 97 straight line 0S deplcts axial merldian, und
curved OF, (circunference of radius py = Ny ctg Bo) depicts central or standard : -
parallel, All mevidlans are depiéted by stralght lines
4 In this projection, distant one from another by un angle
y = 1 8ln By, where | is u difference of longltudes of u
given meridian and axinl'meridian, “O ig a latlitule of* the

4
\\\\~ N Q standurd parallel, Purallels are depleted by curves of

concenbric nres with center at & und panll (ro -d), where

]
!
§ d 1s n digtance between given parallel and the standurd
: g ;
i Flg. 7. purallel (Fig. 97).
3’ As n rule, origln ot coordinates ls selected at point O; the axis of ubsclogas
E] ure directed toward north alorg the axial me*idiun;'fhe axls ol ordinates is on a
tangent to image of standard purallel nt point. 9. toward eagt, . Scnie nlong Lhe *

e AT ATEOTT A e L o]
; a-&nmwynaﬂm_rrmmmm TEANEREEE m’*n"“a‘tﬂ%‘“m g"&’nn, "BUt To mg = 0.999. i .
Then: e ._ o . .

oo muNoctg By e = {9.9)
Flane coordlnntes and convergence of meridians on a plane In LumberL prodegtjon

nre calculwted by the tollowing rmrmulas: o W




' ¥ ={py—d)sin
smdtyigl 1, ‘ (9.10)
H -(L— L.)SlﬂBu

vhere L, 1s o longltude ol axial meridian;

e= A543 - (9.12)
Lambert progectlon is conical, therefore reducllon problem here ls resolved in
+ very complicated manner. In order to have a concept on the degree of complexity
of indicnted problem and to compare its formulas with
corresponding rormulas of Guuss=Kruger proJecr,ibn, licted below

without derivations are the farmulas for reduction of distances

and directions (Fig. 98).

W K R 15 e BRI
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T
[
{

[ Wer

08— =

Reductlon of distances

ilg. 98, 128 = lgm, . fx2 Xs—- Xyt WB Xo XoXw , 8108 Xm
05 =lgms + ko [y SKE | MBJe y S

[}
40’2 tg B, con? B, X) + G+ 28X 0%, — X)) )*
w, 12w )

(9.12)

Reduction of direstions

- ‘ﬂl_‘!’!""!!"_'!‘{ﬁln N +B|n2_’_+
[ [

2 sinl”
L e 2 )t .13
+Clnt-E- 4 DInt L.} (9.13)

In 4these formulas:
§ = distance on spherold along the geodesic arc,
S - dlstance on a plane by chord,

1’.0 = latitude of standard parsllel,

p = modulus of common logarithms,

e =~ gecond meridian eeccentricity,

q ond Xs_, -~ distances of given points along meridién from standard parallel,

. ) Xom X

S rsemcmteTo e ot essrmeesn e s sl moo s

Awm —ctg?B,{l + W

J 3--_—“"8.(!-!-31;-&-2'.9. P
Comp-clgt B(1 = 207 B, btr} = Lo Maint B,

Dm0 B, = te1B, + 1 (36 00 B,

16, remord, Geodesy. M., Geodezizdat, 1958, p. 185.
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roryilas for caleulution off reductlons of dlstances and directions in Lambert

t
: rrojfection are so corolicnted that thelr ase for peode' ic networks on :u plane pecvomes

Lol ly tnexpedle L Theretors during practienl applleafijon of tiils projec! Ton
- * -

Yor trentment of triangulstion it ghould be conducted on the surence of aun #lllpsold
—§ and uhien by Lhe tormula {9,10) grid ecoordinates should we calenlnied, Here we were :
Gt convineed ihat conformsl confeal proJections are complicated in the part ot

{ resolutlon or reduction problem nnd theretf'ore are unfit for use In geodetic work on i

st aren, ns rhe USAR,
her dedlelency of conienl eontormal projectlons consists in Lthat wiin the
chiange ot standard parallel the constant proJjections are also changed, This

: prodection Is convenient only tor topographlce work, where for reduction it is

o R T N TR R e i
EP RN .

mrleient Lo tuke only the maln terms of formulas (9.12), (9.13).

§ 53, STERROGRAPHIC GEODETLIC PROJECTIONS

RO P RERE. & L L atald

Tn methemnticenl cnrtography the class of contormal azlmuthal and perspective

prajections o the sphere on a plane, whoge polnt of view is on obtained surfuce,

o e wa——-

ls vnlled grereographle, These projections possess two very lmportant propertles
r'or peodetic work, they are equlangular and are anble to transmit all clrcles both

Inrinitesimal, nand t'inite in the form of clrcles.

However the surface of u sphere 1s the only one of curved suriaces, whaose

: perspectlve ls strletly conformal, Any perspectlve of sigulfleant purts o' a surface
: o' the spherotd distorts angles and does not trangmit clircles by circles.
. Rowever geodetlce use of stereographlc projectilions is charnclerlized by a

,i pecullaelly that they are used l'or limited areas, and therefore preserve thelr

valunble quallitles for geodetle work. Due to these reservations of strict
determlnntion in the common form stereographlic projection of ellipsoid on a plune
duoryg not exist, Under stereographle projecticon of ellipsold a projection, is
understood Lo possess above-indicated propertiés of stereogruphlc projection o' a
sphere and turning to such a = O, where o — compression of ellipsold,
ARG il G D AL PN LS QI 0 P DAT SR PRBITEE “FHS TR L TERE S Y TR RO o |
pinne.' In geodegy there ure Known stereographic projections determined hy Gnusy . 1

[

Russell, Geyvellnk (échalled Dutch projection) and others, Al; of' Liiem correspond
LQ horizontal stereogruphlc projection of a sphere, 1.e,, projectlon with I'reely

ected ventral point which is eabeéially valuauble tor resolulion of .pre-lems of




1u order to have clear geometric presentation of s stereographlc projections,
1t us tirst conzlder the stareographic projection of a sphere,

LU ar ussume Lhat on the surface of a sphere Fi and 'y ure two inrinlitely olose
roints with 1atituces ¢ and @ + A@, Raradius of sphere, C a point of view, PT a

' ¢
tangent at point P. Points P1 and F? projections of

. .
' polint: P, and Ty on en image plane (Flg. O)),
1 [
2 (] From triangles CPP1 and (‘.PP?
v ‘
’ (. Ah
PP, w2ty 312 '+"
; ? ( -1— " WMiin. !—,!
P:P; = PP,— PP w 2R (12 —gX
ol ) 2 t .
2 3) “_!_«.'w A9
2 )
_— —

—Accepting by smallness d® sin 40 = 0 and eos 40 =

“ig. 99, = 4, we obtain:
. p Rdy . .
LA ral (3.19)

Senle of projected image will be:

Rd3

(e ga‘-‘—‘

. PPy 2
{1l B8 sermamm P e 12

PPy Rds

B b

X
o’ 3

where on n sphere ¢ = %, s is an arc of merildian, hence:

Fnetoring cos‘agn into tinominal serieg and being limited by main teim‘or Lhege

uvrlou, we ohtain:

Mttt : (9.10) -

S S R S SR L AP A T AN SS R UE S R 20 Juc iR et h et O Iyt ramerariee s

.'-‘+'-:-‘+ e A . ((),16’) "

From comparison of formulas (9.46) and (9,16') it follows that distorhtona of

stereogrnphic proJectiona are identical in nll radial diraebions. -and by dimenaions

they are hllf as lnrge ns distortiona in Bauss-Kruser prodeetion._ In only onn

miat e W vt o

<TRAPL P BT S 5 1 RN PRI T o T | 0

ey P




——— e e e [ DR e e

e ar——

prrticular cuse, when x = y, the distortlons in hoth projectlons are ldentical,

flowever linmiting distortions, deternining dimension ot areas, in stereographic

Frojection are about hatt rhar or danss-Kruger projection, this position is Just
for u11 shown projections In determinations of Gauss, Russell, and Geyvelink.
ir polnt B (Flg, 99) s taken us a beglnning of grid coordinates, axls abhsclssn

fo dairected along tangent. P, snd axlis or ordinates is perpendlceular to I'T, then

Wwhetr y e U N %

x-ma-;;-. : : (9.17)

where 8 = are of merldinn between pqullel of given polnt and parullel ot the

beptnndng of coordinates,

e 2all R Ry 1o v svetprord BRI

1. Rusgell Projection

OF the sterveographle geodetle proJections the greater application was obtuined

% by the projJecilon determined by French geographer-geodesist Ruasell. 1In 1922 he

% reneralived the rormula (9,17) ror surface of ellipsold and offered stereographle

; profection, which te characterized by the rollowling properties:

: 1) conformul image; 2) projectlon is symmetric relative to axlunl meridiun and

i .

4) ahsclssags of polnts of nxldl meridian by analogy with stereographic projection

o' n sphere nre determined by tormnulas

ry= R, g Xk, (9.18)

whirre!

b = mean radlus of curvature at the origin of the coordiuntes;

(‘.
X = nre of neridian from equator to s parallel with latltude B;

X

o = are of meridian from equator to parallel of the oriyin of ecoordinates,

In Cnuas«-Kruger pruJecLlon 1t 18 quite the r-re ere oripgin of coordinates ly

e 01 A A LA TSSO 8 B A ATEB0R T AL

ﬁggge Lha or&gin of’

AU AT, ,mmwu-\tm—- -

eoordinntes of vausa-Kruger projection coinnides with the central po*nt ol Ruhsell

_proJacLlon. In this case, obviously, X« %o will be absclesa of polnts ‘of axtul -

P then?

menjdian in"a system of ‘GausseKruger coordinates. We will deaipnate 1t x
S .,'HN:.;,ﬁ"r.n L_ L P
: ‘n‘fﬁi"('f,i“- T (9.19)

4gerles for tuagents ol thls velue we




£+ I S (9.20)
120 mk' -

To Gach poiné of ellipsoid with isometrle coordinates (q, 1) will correspond . .. ;

a point with grid coordinuates (xR, yP) in Russ«1l projection and the point with

COOrdan‘ea (xg, yr) in Gzuss-Kruger projection, Otherwise, each point wlth

coordlnntcs (XH’ yK) of Russell projection will correspond a point with coordinnies

(%, Ng) in Ususs-Kruger projection. This functicnal denersernae can be expressed by

equition in o form:

B D R o b

1
: 3

+ dyg =2, + i) (9.24) o

—};ne—oL_Taylorls_mﬂLhnd___Q_Q_!Ldinﬂ_gw_

> foe

Facto xﬂ.Txg_rTgﬁt_sfde*df“-emﬁm—ﬂ.—?i

real and assumed parts we obtaln:

4
xqmifx) — 5 r'(x,)+—:{-t'"(x,)+ e

u.-v,!’(x,)——‘-v:r"'(x,)+ o

Wren yp = 0 and yg = 0 then:

s ]
-.1-- R T a.21" ;
x, = 1(x) = 2R, & X, + = wk, *omt (9.21') |

we have?

Wk (o arbd

. SRR MU SO :
Fe o, MR .

roua-_‘h-—?—-}#—-*- P (9,21") ,t"":;,
l v ' i

Lo A
e 'R‘+3*3+"'! SR . R A

we obtain?

suLatituting values of derivatives f (xg) in equation for Xg and Yys

S _.'.’L+ .
m’ ®: : (9.22)

Ky, B v

BARS s ey

¥or obtaiuning Russell coordi{nates by a geodetic we wnl use a method,’ de'velc;ped .

)
by ucndgm;cian V. XK. Khrutov.“ For Russell coordinates we will record a known

eqLlon of conformal mapping:

tyblng=Fl +@erUL

fa,

1%1‘1!9@311-. f Vormessims 1937, p. B4-89,

\»,,\




o

Here Aq = q - Qs 4, = vilues of isometric latitude in origin or coordlnntes In
s system of Ruscell coordinates, where x, = G, F(qo') = 0, We wlll expand the

annlytle function F by powers of (N\g + 11)., We have:

) L
' gty =Flo) H g P @) + B prgy |
ok +J=‘-"T“-"lr"'(q.)+ R (9.23)
' Hy For enleulntion of durivotives we luve a formula: .
- E F' ‘1~ ‘l‘ . ‘l’.
. g W)= ™ - “. de '
: i:; Fn(q)_._“..'.'_--"_':. RN ’+.‘:§...‘_’f‘_.
. 1 s sy dx 3 s [ &
F () - R 32 . .8y
: % o= 4.!___.41' PR S - S e
¢ s 5= P
b dg o
N ‘These derlvatives have to be calculuted when Xp = r\qo‘, = 0, Taking into
. aecount. (9,26) and (8.47'), we obialn
Flg) =0, ,
F'(@)wmbmN,cusB,,
F'(qo)nfa"-—.v sinB, cos 8,
) -L_M-_-N cos? B, (1 —21g? B, — 1)
: Substltuting these values of derivative 1n (9.23), we obtain
Sytiyy e NycosB (3 q+ih— -.\' oSinB cos B q 4 il) ~
i
| |;N.M B, — "B, + 1D q +i + . . .
Or, ntter separation of real nnd sssumed parts,
xm NeosBy g~ -;— Netin Bycos 8,1 4% 4 '.— KNysin Byecus Bt e
D £ __'la_r.'ueu.@n“u T L YT : N, ot — 24220, +
‘ +adel? L., (9.74)
# N eos Byl = Norin By e 8, A gt -~ : Nocus* By %
T Y TR IS W TR B CR R
SRR Ay e T _~r~*r_x'!l_ '&'t!g’* ! "*‘,;‘3 ! Lenky Y c"'vg‘}f-(_!z:»:. gl“r-.-c':i‘l !1“‘!'“ - o

Slgn "0" here means that these values pertain to 1at!tude of origin of
coordinutes, In these formulas Ay is usually-expressed by AR by the formulu (8.27);

omitting detalls of ealculntions, we will recoi'd f'inal formulns r‘m-'xR g Y. wlth

il

"R suvstitutlon of Ag by correspanding dependence by AR,




xg= N, — 72+ 9338+ -;-N“ B, (392~ G B i
+ 5 N, sin Beoshf 4 "i;’ N, (1 + 475 — Glg? B n) A B +
o5 N costB,(1 — g2 B, + NGB, 7D IBE 1o (9.2)
y. =N cos B~ N, sin B cos B, (1 —v8 + %) Bl —

——-N cos B, (1 — 72+ 64B, 12) AB*(+ - -—N codB, %

X =2 4P . .. - (9.27)

Caleulsntlon of Russell coordinates by the formulas (9.20) and (5.27) has Lhat

peculiurily whicihi nt o given origin of coordinates of valuesa, appearing at differences

af latitudes ond longlitudes, are constant, once and for all calculated., ‘luevefore

TCALCUTHCIOn s reduced to-remultiplicaricn of various degrees of differences of

1ntitude and longltudes to constant coefficients., Due to this sxpresslon (9, 2() And

{9.27) nre called formulas with constant coefficients in llterature. Certaln authors

ftry to obtain similar formulas for Gauss-Kruger coordinates. However formulus with

constanl, co: fficients in CGauss=-Kruger projection do not have practical benefits, us
comprired to the usual, In practice, if Russell coordlnates are calculated with
acgiirney of up to 0.4 m, prepared tablés, are used with whose help the required
coordinates are obtained by interpolation. Calculation by the formulas (G,2A) and
(9.27) is used in rare cases, when it is regquired to have coordinates with accnracy
ot up to 1 em,

Reduetions of' directions are calculated by approximute formula, whose

derivation is shown below,
Let us assume that on an elllpsold two points of triangulation are glven

l)

1 and P? ("ig. 100). We will join them with origin of ecordinates O by geodesie,

The gum of the angles of the triungle QP [,

-

will be 180° + E, € 18 a spherical excess of

this trliangle, Let us assume that triungle
5’ﬁ°pﬁper +(Fhger A04). G°£¥Qipﬂﬂﬁ§m$ﬂgﬁan$£;£“1,

Rt

The sum of the angles of the trianple on-;v;

g, 100, Flg, 201, will te 180° + B, + b,, where b, und b, nre
corrections for curvathre of the 1mupe of

geodesic or reuuvtion in direotionu.

e Lo conformity of image: .
10 s 100 8y 4 1y

triangle OPlr’2 on & plane 1n Russell proJeeLion.

g
§

£

o

P

PSRN
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2
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-3 43,

! Lot us approxtmate that vy = by = b, then:
e B B =
- '. ’
l i 1n phumerated rormuluas under bi’ 62 and U thelr absolute values ure implied,
S¥ ¥
b - The spherical excess, ag 1t 1o known, ls egual ta;
.
.k -t
bl | o
' I' = aren of triangle OPiPO. which by coordinates cof vertexes of a triangle s
. B
{ g: expresued by formula:
: . P B R - - e e
7 1. 3 ,
{ therel'ore:
. '~"'"££&ii§!!' (9. 78)
\ i Formula {9,28) gives main term for the reduction of direction, )
i i
i : We have:
: A v
, .vl"”."'—’L: h=ga+ ‘, f
&
. v . Lhenst
. ¢
; e - e
| ' '
. .
} lorrespanding values i+ Gauss=Kruger projJecilon are expressed hy formula:
| VATt (9.20)
% From comparlson of formulas (9,29) and (9.%0) it follows Lhul the reduction ot
{

directiong In Russgell projeciion is half as blp ns in Guugs-Kruprar projection, ‘This

conclusion la gquite correct with respect to main terms of formulun tor the reducllon

HILE. O G AT SERTIERL h BT R S e

s 03 e b o Lt B K o) o8 i e
Kugsell projectlon is convenienﬁ for countrles of round outline and compurn!lvely
amall arens, It wns nsed ln geodetic work in Poland and Rumunlu, dp Lo Ll decond
World War, und in lrance since 1924,
. Rusoell proﬁecuion has certnin adventages in comparlson Lo Uudan-Krumar
ﬁfoduetlon with respsct to values of reduction in lengihs and divectlon. I, Lhe

caleulalions are somewhat more eomplicated than in Quuss=Kruger projection, The upe

«272-
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of Russell prcjection 1in speclal geodetic work is profitable ln cases, where

necessity arises to introduce corrections in angles of polysonometeric and theodclite

rung or: Gauss-Kruger projection. In this case using Russell pgrojeclion necessity

o!' Introduction aof correctlions in lengths of lirnes, and In directions is nol needed,

tiawzs-Kruger projection is universal and ls uzeful for any countries and

conlinents, but the Russell projection is only for small round shaped countries,

During planning of englreering construction and translation of : project Lo

e = ey s §

nafure 11 is very important not to introduce 1Into measured geodetic vilues of

corvections in transitlion from ellipsold Lo o plane. 1In this respect stereosruphlc

vrojention, especially for limited arens, has indubltable advantages over

Guuss=-Xeuper projection,

AR B M St e NS I R, - ) :
‘ e e .
{ . : i . .

T - Inusing-steraographlc_projections in state work frequently the scale al central ;
polul la tnker: of egqual value, to a smaller unit, i.e,, my < 4. Due Lo this, x und y ?

coordinates, calculcted by the formulas {9.26) and (9.27), should be multiplied by ! .

mys then the scale et any polat wili b ‘ ]

o !

\ M i e——itty,

oo | | |
1 .

‘ such scale decrease leads to redistribution of dlstortions, and maxitum valne
of distortion falls to central area, vut on area edges the s.ale becomes cloese to :
: i ;

Pricer te World War Poland adopted g scale with central polnt at My = 0,90994. -

one.
In other

In this case the scale is equal to one at polnts within a radius of 285 km.

words, the radius of an area of application of stereographlc projection with

My = 0.9995 15 nearly 300 km,

v

2. [The Gauss Projection

Gint:gs mrde u more complex determinatlion of stereographic progecticﬁ of an

e A St et e ot 4 e @i g

elllpsoid on u plane, He proposed calculation ol abscissa of poluts of axlal

meridian by a formula velow:

21 g_.n_f[_'grfun.)am -

where:




R 2Ny, @ =90—8, @O, =50—p,
(]

—

( L4 rcne

l—ecm®
vl

Ateme,
l—mm.

¢ = accentriclty of ellipsold, sign "o" slenifies, that a siven value pertains to
centrel point,
vor any polnt ol deplcted area its stereographic coerdinates are determined

Ly o tull eguarion:

O B SAPRPEE o s ety SRR

m"lni—'g!’ )
il hodo g WL 2 2 o
. T et (9.57)
) 1] ge Ig~=— Og—;
: % (=i—i, ;-/-—l
¥ e e e e
i We wlll omit detulls of derlvations and will glve a t'ormula, by which pnd
r coordinates in Causs stereographic projection are calculated:
§ -:—--—-— olg = "cw'—-z--*g'm —=*sint - )-—-tlg%
3 .
! [ ] sn@sini
\ g Y b, . (9,53)}
D= 2m'-:—'cns‘ % + gsind, sinPeont Qg’.‘in’.-;;‘ sin'% .
4
& iy these formulas abacissas are positlve northward, and ordinates eastward.
N The scale of image atl main polnt is the sume as In Russell projection unly in
B
! A expression of scale in Russell projection it is necessary to replace Ro by NO—-’
{
§ Lheretores
¥ .
‘ moe |4 ._"_t!.'-_ (i‘J'}JI)
a w

higstortion of lengths in Gaiss projection is the same, as in Russell projectlion,
For reduction or directions by analogy with Russell projection we have: '
g -y (9.34)

At Ry rpiverin; fable «10-the-basic. characterietics of

augs wnd
kugeell projectlions,
This table ahows that distortion of lengths in Gauss-Kruger projeciion is

moglly larrer than in stereographic preojections; and ‘he reductlon of directtons in

[

L, X \,‘er. Zur stereocraphischen Projection, 1922, p, 8.
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Table 10

s

them, with a single system of coordinates in zones for the convenience of practical

calculations during transition from ellipsoid to a plane and conversely.

Gouss=-Kruger coordinates are characterized by the following important

.-broperties for large ureas: N
B = ’ : SR k- A A s
1. Scale of image and convergence or meridians increases eastward and wesStwar

from the n xial meridian comparatively slowly and are functions of ordinates of a

point at a given latitude.
"2, Coordinate zones are two angles of meridian directlons, extending from

souﬁhern to northern poles, and éré symmetric in reletion to axial meridian,

Liesi pation of useeKmgar Stereographic projections
cramctoristics nprajection Gaugs Risaell
(istertien of [ l(y= + 13y stvd, + ) :
lemins — ——— ——— e
t L wi L
Reduction of s . " v 2 oo
lengths Ma v (Svzetia e 4 fRlUe ) t
(lda - 1gs) ’*.'.+ e wi Fibes GRT we* ’
Reduetion of —%iva . LILTRALTL/ S0 L L I ‘
direersons b 3k N 4R} ,
f
stereopraphic projections is half as large. But stereographic projections yleld to i i
Gouss-Kruger projection with respect tc simolicity of formulas. Ti.2 uppllication of § !
. %
stereographic projections 15 expedient for areas of round outline, while Gauss-Kruper § !
prolection is universal. § :
B
e e § 54. CONCLUSION ON GEGDETIC PRCJECTIONS g : ’

Short survey of geodetlc projections ﬁermlhs a'EBFSA¥£€£§EIy ensy answer L0 & \‘- -
very lmportant guestion: how well Is selec:ion of Gauss-Kruger projection and ‘
coordinates for the USSR is fopunded.

The selectlion of geodetlc projection stems from dimensions and contiguration :
of Lhe country; besides an effort is made to adopt a single system for all the :
c¢ountry, TFor small countries with round configuration it is expedient to select
souie stereographlc projection; when the area extends from south to north along a
meridian 1t should be & cylindrical projection; when it is from west to east along {
a parallel it should be conical.

For such states as USSR, Chinese Peoples Republic, United States and others s
the question of selection of a single system of plane coordinates of any projection
for entire country is generally dropped. Here a problem appears about expedient R
division of territory into coordinate zones, with the smallest possible number of gi




£y
b

et
B

A, aystems of coordinantes {n nll zones are siwilur; beslides n number off

ceceilnnte rones tor large aress snd even ror all the surracs of the Farth 1a

et ey sl ),
W toresilas foer o reseluntion of direch and lrverse proeblems of poedection, ore

Sl b tover gerles of o glmilar form o snd are functlons of not more thuan two argument:,

WILE e 1 1abkitity of specinl *ablen, tdentical ror nit zones, the csleculutions nre

-
P
. ¥ .
i E wente very simcly snd with necessary accuracy,
; s P petiemntical alde the advantages of Gauss=Kruger coordinutes sre enstly
* pevester booropenricon of basle enaracteristlie functions of geodetle projeclicvo:,
s e
g Fhese funetions are usually glven ror points of axial meridlan.
X
. 5 1. ChrereKeager projectton v, o= X,
e - * v U=1.
? T Wl dner prodection x, = X,
LI . i . — o e g A < = o ety e XL
. 4 e hussell Gleledfrainic proJéction [ PN o >4 . ’ T
. . € ?RO
' ) i
: (1 Rl Sl A
4. Gauss stereographilc projection xg= ———"=y T
: LA X
: ‘.. Lambert conleal projection s Nelg B,
i
: & trom these tormulae it fellews that the more simple churacterisiic runctjonn
: ¢
g are o Gnusg=Kruger and Sol'dner projectiong, but the iast one 1s notl conformil,
3
H TS property of Ghuss-Kruger projection wllows trangler of orlgin or coordinaten
4 aborys axinl meridian and to take 1t nt any point, thls can lead Lo cluplifieaticn ol
& . .
# Pormulae wlthonut danuge Lo thelr generalization,
b rey
! ? Frem geodetio projectlons only the: Gaues<Kruger projection ¢:n be upplled tor
E % A1 Lhe surince of the globe, 1t', of course, all the countrien will adopt the sime
' [
! ’ rederence =111psotd,  We must nssume that in the thiture a questicn can appenst nboul
i
i 2 osingle system of rectangular coordinates for all the Larth, As Academlelan V, F,
i
! khrtctey points ont, 1t would be possible In such A cagse to aveld negntive nbgeissag

Popr gouthiern hemisphere, I o length of squnre of a merldinn is added to polntae or
wftal nerldlan, that is to taket

X=X Q

o=+ 3 Lan L O T T T P T

“This means thnt length of arce of meridisn shouidt be measured from louth l'vle,

In propagution of Guuss-Kruger coordinates to large areas a det'inlte system le
required, 358 hos the greatest exrerlence in use of Guuss-Kruger coordirites both

in geodetiz, :nd cartographic work. This experience should Le congldeved In all

cﬁsea, however, 1t is nlready used In certain countries. Here lg what German




peodesizt Kneles, coauthor of' the last (tenth) edition of a well known "Instruction
on Geodesy" Jordan, in Volume IV of this work wrltes: ;

"In USSR for the purpose of cartography Gauss-Kruger projection is also used

with three degree and 3ix degree zones, The Sovlet designations for si.-degree i
|
zoneg, ftor cocordinates and corresponding grid on maps are very expedient, for the . __M&h
same reason they were ualso adopted in cther countries, among them in iermany, tCor "
. s N ;
specinl maps, made during the war,"* i
1
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&
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.DIFF™RENTIAL FOGRMULAS

§ 55.° DETSRMINATIONS

ly dirterentinl formulas of ﬁpheroidai geodesy nre meant such, wllh whoze help
corrections of cnleulated geodetlc coordinates and azlmuthe for a change of Inltial-

initial geodesle coordinates, azimuathe, distances, nujor
In

geodetlc duta such as:
seminxis nnd compreasion of reference ellipsoid are toaken into consideration.
nccordance wlth Lhis two forms of differential formulae are distinguished, Those,

which glve indlcated corrections for change of initial geodetic conrdinates, diatancen

and nzimuths, are called differential formulss of first type, and those, which give

correctlons for change of major semiaxls and compression of reference-ellipsold,

nre called difrerential formulas of second type.

condihlonul, Lut they have now become conventional,

It 1s clear, that these terms are

Cnuses, for changes of initial gecdetic data, are &s a rule, urknown betorehand,
Por instnnce, initinl geodetic coordinates can change after general adjustment of

uaLruuoch geadntic net of the counvury. Errors in initlal data can be revesled

duvtnm enleulations of triangulaticn, even grosg arrors are possible in ipitinl datn,

‘hof coordlnutea and azimuths,

SRR O AR IE 2L S gL, WL

Whﬂn. rererence»ellipuoid adopted in a glven country £s reﬁiacsa“by and%ﬁ%r.

2. T ANAT !E‘!ﬂ!"m ety

more duitnble for the area of. the country, 1i becones necessary to repompute the

coordinntrs of painhu on a new reference-ellipscid. In this case it 18 naceaaarv

lo use differantial rormulas of both first, and second type. o
Prerevulutxonary triangulacion in Rusaia wua eonputed on. ellipuoids of Vhl'bak

e PP

5
3

-t
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Bessel, Clurke snd even on "coordinating" ellipsoid. Therefore in uslng poluts of

£
i

it Bropeath 8- o s sy SREEE A

Old triangulations, hecessity urises for use of dererential formulus for recomputullon
- ol cuamtinates oF polnta or oid trlengulanions on Krasovgkly rererence-el lipsotd,
Furthermore, dlfferential formulas of the 1'irst type are used In udjusting nstronomic
reod tle net.o by nomethod ol N. A, Urrayev, and tormulas of the second Lype durlng )
composition ol equatlons of tri:ngalation,

Noturnlly, It reodetle coordlnatqs and puerumeters of reference-elllipsold nre

Chuged, then vorrespondinely srid coordinates have to be changed in U8HR to

Gauti=Krager coomtinntes,  Consequently, a necessily arlses for obtsining dlfferent il

TTOTMLAE TS PR LY Codraliate 8 TTor adopled projJéclion of lerrestrial ellipsold on ™ 7 777

plane,  We will eall such formulas differential formulas of the third type,

§ b6, DIFPESENTIAL FORMULAS OF THE FIRST 'TYPL
Let wg assume Lhat geodetle coordinates of the firat point, by which distance und
vzlmulh of coordinatos of the second polnt weré caleuluted obtntined correspondirvy
Inereases; then the chunge of coordinutes of the second point and azimuth or génﬁvslc

ot Ehlu pownt ean be expressed by the following tormulng:

IV e et R ALY I SRR .-;;.wL, B

[ [ "N ' .
; an.f-&ﬁ-ds+-fg-da.+-‘e.f¢a, ; ;
‘ a.--“b-ds+-!!=-u.+—‘-ﬁ'-ua.+a. ) (10.1)

dA, - -—'- ds ‘”‘1- dA, - 2. ap,

Fxpleualonu (10.1) espenliully are net total dirferantiuls, gince here 1n n
: qﬂriuuly methemntleal gense there are no - partial derivaLivas, and on the fuce of it
uanlnl vhnnpea g, dAj. dH1 are hod dift'erventinlg, but certnin given numhora. Lhe
vnxuvﬂ However, under tﬂe aign cf partlal darivntjves zre conversion Fautors,

| TLevetors 1L would e movk ¢orrect (10.1) to rewrige them in"tle Tollowing forms

:.g-a.-l-muz."-m.f . A, .
Rl "
"-where nlgnu l*om ubov" ure: 8, nl and bl meun Lhut corronpondlng «ulaes cnnuiuew only

’chnng& u; lenmkh,\uximuth :und J&L*tuue. Wb and thcl. vn&ues t'rom ueomauruv-'»i_v
'Qlutlonahips. wo|willud¢f1nu du? dL; wnd dAa .4 Let NH anlume that the ;auuuw&u .
‘ﬂtw cu two poLLE wun“ﬂhungad by da (Fig. 102). than rrom olomentury rlghn_:“'

A INTRRURT

trlﬂnnln oy l‘,,l’ﬂ (Fig¢ 105) wa huvoa _ ',,-.:-i S .fﬂ: EEEE o




5 L o]
Fig, 462, ' Plg. 103,

MdBy = dscos (180°+A,).
ALy = dssin(180°4 A,),
A} = dlssin B,

BT L & E T T T S S NSO ——

"a"'-';‘:.'cbs.h

dl.'.-—'f-slnl, (10,7)

dA} = -f- sin Agsin B,

Formulas (10.3) give partial changes of lutitude, longitude and azimuth at

the chunge of & to das.
Let us assume that ncw the Initlal azimuth was changed to dA, (Fig. 104),

then in accordance with Fig., 105 we have:
o= M 4B m — mdA sin A,
2ydL2 w - md A cO3 Ay,
or
4B} = Zesin AdA,
* (10.4)
% L - — "'.‘“"a“c
[ "
l“ig; 104, Using (10.4), we find a change of second azimuth., Enter
fundamental equation of a geodesic in the form of

ry aln A1 = =Ty sin Aa. differentiating this and considering ry as a constant.;

”

" “‘.‘Al - "". sin ‘.— ’.C“A"A'. :

'r"l‘ hencet

--m‘ o=
P g e
Fig. 105, But:

- ey o= Mysin B8, vy

thersfore ﬁnking into account the }‘1ra€"rmm..(10.4). we obtain:
\
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dA;‘-u-—l-:—:s-‘}:——:—'lgd,hinﬁ,ﬁnﬂ,]dﬁ,. ' (10.0)

In expressions (10.4) and (10.5) m Is 2 reduced leng ' of geodesle, for whese
vompatstion formala (3.455) shwould e used,

In order to find the Influence cf the change of 1nitial latitude in geodetic
coordinates of second point, we will use the followlng construction,

Let us assume that with constant o und A1 the latitude Hi is changed to dRi
(Flg., 200, then }’1 will occupy on its meridlan position P;. Let us take "‘E as

orlgin of the polur geodelic coordlnate, und radlus,

equal to s, and descrite the geodetic clirvumference where

RS | B . e . L
" r'111 = maAE. We' will ‘trancfer the geodesic P1P1P2 parallel

rwg to 1tself in such a manner that point P; coinclded with

4 Pi, then s, passing through P2, will occupy a new positlon
P'P I’ll . 1 \ll 1) ) 1"
Flg, 100, . 1Fotys where by construction }1P1 = ngg'

Taking now for the origin of polar coordinates point
Pi. we will revolve the geodesic until 1t will not have an aszimuth, equal to A1 at
polnt Pi. Puring rotation of second end of the geodesic it will describe an are of
geodetic circum 2rence and point Pg and occupy poslition P;. Obviously, P; is Lhé
unknown position P? at the change of E1 to dBl. This constructlon shows that the

influence of dﬂi on t'inal coordinut.s can be considered as a change of length of Lhe

geodeslc to ds . = P2P; and the Initlal azimuth to dA:l.

From the elementary right-angle triangle PiP;P;
PPy mdhy = MdB sin A, PPy e PP = M dB es A,

Applying equatlon (3.49):

e AT

LN OWE ‘e aNE,” Whare 40 ‘=R, rdolhe QB And 0 w Ay

v
M

PYRLIRS %
dp; - ’i'\'f' ) yinA,Mda,,
¢ U

‘A;u P"'.! " “-.ﬂﬂ ‘.‘”L.
, " ——-
1] . ‘ ‘
. L - _};p’ - wedA .. Al,:lna.dn'(\_"%)._
# ¥ » )
Paasing from Py to P; ﬁhﬂ-f’9m P; to P;: we obtaint

[ x-.;n_l
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By . — !‘!:.l‘quA sind, (4 dm ® T e e, J,m.

dLh u.am{unA‘mnA,(};)'-u»A‘ﬁqA }dﬂ ' (10.1) ‘

dAY: M' ‘*lﬂﬂ ——--—smA e A sinlly | H }

+ sin A‘[:_::-i':;‘"_-'v—: te /l,sm_A,‘siin ll,]}.m,. (10,7 g E |

Sl "o s dé’l‘lV:lLth‘(-:ﬁ) Indicates that It Is tuken for point 0, ® '

-presslons (10,3), (10,4), (10.6) and (10.7) 1n totallty strietly recolve the ;t ;

voamd problem ond are called dirferentlgl formulas of flrst type. | § !

Thege Tormulas are suitable for any s, For short distances, on the order o a ; § f

side of 1st order trisngulation,. these rormulas ¢an be simplified, hy tnking — g ;

. 3
M1 : M? - N:l B Ng and m = 8§ - 56-— ves  But in practlice iy ls beltoer Lo use othey -

tormulag, which ure obtailned with the help of formulae with meun .-:rk,unmnt.::. )
Let ug conslder inverse problem of differential formulas: change of leugth of ‘
are of geodesac and its azimuths, evoked by changes of latitude nnd longliude of }
terminal points. :
Let, ue assume that are s was changed to ds and A:l to dAﬁ, then rrom (1v,3%), ‘

(10.4) and (10,5) we have: ' ,
dﬂ.n-——sluﬁ,d/l. —eu\/l,dx —Mgsin A, VM ens Ay l ' "
dly=— !L';!ﬁ . !11*'—""4.’"-‘ rpcnd, | rpsina, “ (10.8) !

4
Qd/.l. [::T“—A-:--i — 41t Agshiy Agsin ll,l«M,-— T
--%u»m.uuu.as. . {10.9)

From the first two equations (10.8) by means of multiplieation oy vslues, shown
on the right, and addltion we obtain: '

"‘l - M,Cl‘ A‘d";—'. sin Ajﬂq

i mM. nM.slnMB,-r,cmA,dL‘ (10,10)

Keplacing in (10.9) p de and mdA, through (40. 10), we obtalin:
ndA, - _{.;:;_:1. + S 1gA,sin Aysin a.] lM.aln Ay = ry con Al h

'-‘-'—M"l—'-‘—"!'lM.cm Ay — rysin A,nfl.,].

‘Omitting detalls of ecaleulations, this expressihonAcén be brought to the

ollowing form:




—rcm——

' mdA, - M,(-:—':‘-)'slml,dl), 4 ryeus AL, (10.11)
i - Pgs, s a0 pregult of chanpe of peodet e coordlnntes of Lerndnal pobnre 1o
% d?';‘ Sl dl,;, tirve Tength cff peodesie und Jtg azlmuths clooyne Lhegss
2 i pds . — Mcos AdB, —rysin AL,
L mdA; = Mysin AdB, — rycos Agll, (10.17)
E. mdA, - fvi,(-":-':—'-)l sin AdBy 4y ens Adl,
,;
; A e clogge of coondinntey o toltial polnt Lo dlﬁ1 arud dLj formilone (10,10)
"- PreZerve their strenglh with replacement of Indices "1" to "2", d,e,,
; pids = — M, cos AdR, — rysin AdL,
i o M, (S ) 0 At 4 rpconad, . (10.1)
SR Ll e . .. mdAy o M, sin AdB, — r,cos AL,
' 11 however ctoordinates of initinl and  erminal poln's of peodesic are
simultanvously chyed then, taking Into accoun: ry sin A:l S PN sin /\:, 'rom
: (30,42) and (10,13) It follows thats
pds o == My cos AdBy — Alycos AdBy— rysin Ay (il — dL,)
' mdr, M, (gi"'.). sin Aydis, 4 Mysin Ayl — rycos A, %
! X (dl.qw dl.,) . (10, 10)
nalAy . Mysin Al M,("::' ')‘slu AfdBy b rieos A
: sldly— dl.,)
g olrrerential tormulag (10,24) In simpliried vorm are applied for adgost inge
, i satronosie peodellie netg by a method off N, A, Urmnyev,  ALL abavee oblalned
'a ’ E ; d1flerenttal Poranlan nres gtrlien and are sultable
] ( 'or any 8.
' Here nre differential x'orﬁl!'ll:ln ol rirct type In
g ; Helmert deslenntlons.
i

Wa hinves

"fn = pydll, + P»é-‘ + pudA,
_ dlyw dLy o1 qudB, - ods £ quiA, 4.
LR d‘|‘lﬁd8{qfﬂéh*;zdﬁfq‘ ' ’5

{10.2h)
Flﬁ- 107,
- Here:

Py =~ -:—":-lnn Mynin -A,(-‘-""-"-’)' + cus A, cos A, ].
P v wu'?' 'O"n
Mo -:-;'-'nln Ay

' | L J":" [.m Hona (& )‘--:- emA.mM-]; |




C teevetens

s L

s B o camn ety

et s o s dled

v n e A

Gy = — 3"‘%“" ¢’
Gy o - CMA,, i
M m | neo A f
r,--; alnA,—-;—slnA,eosA.slnB.+|lnA.(-'-:;-;':- N ’

~ 2 tg Aysin Aysin 8,)].
n

sinAysin 8 .
I.-—- ———-L';—._LP'.

1y — [.'!_"9.._‘_'. - .:'—- g Aysin A, sin B,].
(]

I'lg, 107 gives geometrlc representatlon of values, Included in dlrfrrentinn

formilus of' the flrst type.
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§ v7. DIFFERENTIAL FORMULAS OF SECOND TYDE
rind changes of differences of latlitudes, longitudes and nzimiths,

Lpsold to do and

We must

TR A i BRI ¢ 4

caused by changes of major semluxls of adopted reference-ell

compressiva to de, In the common form we may assume that the shown dlifferences,

o’ Lhe functions of major semiaxis and compression of ellipeold are: '
b"-'b(a, ")0
{ = i{a, l).
'N‘(O, .)

or:
: 1

g
VouBdot 2 de
oLy dloe (20.16)
o Lag X . L du ;

For b, 1 and t formulae (5.9) were obtained, Retaining in them small values , i

i v o ML fe o

up to seccend order inclusively, we have:

bm bt b+ byt + 4 ' ; i
ol lpo b . \10.17) ’: d -
tw a0+ a0+l L JERPEE

In thege formulas:

u-lcoul. v-nlnA
.‘n ’ b'u-"”tgn by ™ um

PAL
‘.- "u' .,.m%‘,‘!m ° - ’

Vw4, Yo edoor'll




From {(3u.1f) we nuve:

» _o 4 B, 2 vt
% 4" + i Pl ol + +
LIRS _4 a4
w @t e '4."+ o
§ oy by, Xy ‘“1
— —_p
%~ @t Tt n o w

(-x::l'.!,huf ealeulition ot derivatives, we will record tinal results, retaining

i troeps s betare soe ll ovelaes of the gsecond order fnceluslively:

tb [bv'_ 2 n g2 emhien f:ff] o,
# 2 ¥l e
‘ o [”' ot B(E o op o 4 ) 2
;; ﬁ”
4
‘ X(2—22 4 2:".')+~':—°°iﬂ‘—s (I 'll+~——1'lg'l!+
. - l'
- +-;1,‘tg‘l!]d
u"-—-[l"-l- e !gB(l—v,')]————[l"cos’l)(l&’l}-—
(10.149)
— g B+ Lo B)-{»n_....ros'BlgB(lyB——
-—-’—v.'h.'u+ --v, 12‘8)]
: i -—-[I‘:o*BlgB +———cusB(I + tg’B-—-v'lg’B)]--.. o
3 _[ “’B‘RB(‘M—- B e

Bletersntlal formulas (10,.19) are used ln enleulsntlon of correctionn in
ditterences of latituden, longitudes and azimuths r'or a change of major gemiaxls iy
da and compressicn by A9 on the adopted rererence=-elljvsold,  These formulne ponsens
fibrh acenraey vor diglances ot sbout 200-300 km, i.e., tor dingonnls of 18t order

Crlappenlatlon Migures, iheretore they should be recommended for depree mensurements,

BET % o
FEE e s, Al L T T

winn parascters ot terrestrial ellipsoid Srom as: rononle geodetle nets are

determined, For 1st order itriangulation, where limlting lengihs ot sldes do nol
exceed =70 Km, Lhese formulas nre excessively exact and are hitlky,
Innsmuch as ditf'erentinl formulas at distances of H0-TO km are mnore {‘requently

used, speclal tormulag, computed for mass appllcution-are shown below,




Y 8, JOINT DIFFERENTIAL FCRMULAS OF VI1ksT AW SEOCND TVier
FOR 437 ORDER TRIANG!ULATION

et nz ancame that initial dava for computation of coordinatles off trlag-.battic, :
points were changed simultaneously: i S
8, v dB: s o ds @ w da i %
Lyvo dly; A 15 dA; 3 v du; ; ’
b 4 X
It is required to find changes BE’ LP and AE‘ i
It can bve accepted thaots § i
By~ B(B, 5 A, a. a)aaB, +'ZII,- BB +dB s+ a5, A, + i
+ dA, a4 da, ® 4 du) £
L, =0(B,. 5. A, q, a)andly b il = LB, dB,, 54 b, A i fa4~ ~ g
<+ dA, @ du, a1 de) (1) &
Avs AB, s, Ay a, alwtA, k5 A m A(B, 4 dB,, < doy, A, -+ 4
+dA, 04 du, 3+ ds) _ _ ; :
From (10,20) %
£
33--JB;+——dB.+sf—'l-‘!‘—+-"ldA +a '"'"4. L :
] 2 da {
i R z'-_ Mo o :
:"‘Ln'!- dBA+ . +‘A.dAA+'~ - + de . (10.2\3')
A, =dA 430 g 3.4..1*_ 24 L L} .
A= ’+aa. Bt s ot dh e 5T+
IFor computation of partial derivatives from B, L and A we will take these
ranetions in the form of main terms of formulas ~lth mean argumente
LA :
bm e ﬂscuﬁ.+l. _ L
1o !-!u!nA sech, 44 | (10.21) : :
- -—'—sssw.cga 41, : g i
; p
In computation of partlial derivatives we will retain in them only small values %
of flrst order. Since partial derivatives have in (10.20') factors ;
cnl. %?w dAi, %? and do are small values of Lhe second crder, then final formilas

for bR,, bL, and bAé will be exact to small values of third order inclusively. For

differentiation by latitude wm will be considered constant since change in wm by
latitude for usual sides of ist order triangulation shows only at 8ixth decimal.

pelint.
Trom (10.21) with shown reservations we have:




a Lo Ly, |2t
o [T fod M, n28, "’
8 [ oL { 34 [
—— i — — — —
& ] ] [ ds ]
= 98 bigAn oL ] 3A ¢
-~ — iAn | —— =-—cigA,,

*g %, 2 ' | Tt o =7 S8

" -._‘_.--...!_. -—‘L-—‘—‘m. -‘—4—-—_‘—.'

t ' Oa . ' o da ¢

M -—-m 3sint B, |5 e —psingBy |24 o —fsin®B

. o s

i

. Sunmeuently, .

' 5 d; (g And

, EBymdb, 4 b —;—'——b-——'z:f-,ﬁ b9 " 4+ 6(2—3sin"B)dx,

: Al g, ! 2t “:"- B, + "‘L.»L,M -

‘ e 4 (10, 20

“ —Ism’B,d- L0

4 A, = dA -t dB, 4 (324

H - § Pl DAL YY) ——

st + ma +l2,, A, — t
S - ——lslﬂ‘B.rl:.

) Ltadoned 1ormilae are sultable for distances on an order of the length of &
clde ot 1st order triangulstion, They ar- convenient for calculution by compiters
wlth retention ot t'ive gecimal plares, Actaul corrections have to be rounded to

L .
0,001, slnce these formulss do not give great accuracy, inasmuch as coetficients for

: : 2
dlij :il\.l. ... d@ are erroneous for values e‘b, 92.7., eat. These rformulas are fully
sultoele for any calenlations ror topograpiic and cartofraphic purposes,

durlng recompuiaion of coordinates from one ellipsoid to another, ir this

: recomputatlon 1o mnde S0 4 system of Interconnected points, it ls necessury Lo uge

. dirferentinl formulac ot Tirst and second type simul.uneously. Consequently,

tormule (1U,22) tully resolves ithils protlem, 1P hipgher accuracy of' recomputaiion

. i ' ; ;
. 18 nct regulred than thal, whileh csn be obtalned {rom formulas (10.22),
|

: 3 § 49, DIFFERFENTIAT. FGRMULAS OF THIRD TYPE

3 (FOR GALER-KRUGER CCORDINATES)

;- le! us assume that cimultaneously geodelle coordinates B and 1, major semiaris v

.X»'

andd compression @ of udopted reference-ellipsoid changed their values; it is

regui reil

to 1ind chunges in Guussc-Kruger coordinates, i,e,, changes in x and y,

- ¥op Onusg-Kruger coovdinates tske formulas (8,12)

TwmXtaltald ..,
pmbl by L.

We have:




drmtx 4 (052 +l‘-—-‘-)dﬂ+l‘(—-‘-da+ L da)+

+ Qo + 42 df (1,4
», 3, a5, ab, . ; _
: dyu(l FaR )43+1( Dida 4 2 da.)+(b.+ % :
+ M dt ! ]
!. W are:s i . ’
: % .
- % ¢B+ ——¢a+—-dc ; :
We deslgnate: -
X ¥
3 .8 1
¥ ”» “® (1w, o) :
- [ 4 [ )3 ' “eetty ®
. ix ™ da 4 o de a
. thiens % .
’ X=X 43x. (10,20} .
Partial derivatives, entered in (10.23), hrave the following values: !
S, Neon2B B [
% G - Msin B,
. da, Neas [ O, _Nwstnsin B - -
B0, NeetB | t g0 | 2 Nees? Bslohi o 8. 58
g - P — I8 r) e M (3 =121 5ef),
~' 2oy _ 8y P b
™ e’ e’
doy e & busintn
[] [Z sin'B, de v
Substituting values of partial derivatives in (10.23), we obtain: 'f
s _
dimiX4ix4 [ ""';‘—’!'-- "":"" (5-|s:'-x~:‘)]dm
4 +ef(-4‘;‘-+siu'nd- + 20, + $ayP)dl ' é
b . ¢ (10.26) ; :
f dym—[18130a8 + 2 sin ot s :*+s:.-)]¢m+ i
F . .
-‘ + 4L +ointBde) + (b, + M : ‘
3 In practical applicatioa of formulas (10.26) it should be borne in mind that ’
bX 18 change X, during change of latlitude B to dB (taken from tables of arcs of
meridians); bx is change X due to change a to da and © to da (found in comparizon of

tabular arcs of meridians for the gsame latitude of both reference-#11ipscias);

During calculation of partial derivatives following simplifications are made:

changes L, and a,, evoked by changes of a and a, are 50 small that the following ts
3 b .

adopted: & », »,
o . ~ -ﬂ..;_.,-o-
da

derivative 15? 1s taken in "spherical presentation,” i.e.,
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whors 38 = conf,

In spplleavion ot thege rormislas, wat-les ghoultd be composed ror values,
Attty on Y voder . uets Palblen e surfleient for oo deprec off ot tade witi,
Aer jevinna] plueea,  Values o, «i";, I’\. l". dbv pd A must be expressod 1noradinns,

Pormalas (100.20) have aceunrey toosmedl valucs of thicd order incluslvely and
can peused furing nprecicn peadel e computatlions,

tormilys (19,00) conslst ot bwe partss tirst part expresaseé; change of
rectamiiar courdinntes tor changes In geodetle coordinntes, jnd second pnret fop
ceotgee o asior demiaxle and conpression ot adopted reference-ellipsold, When
necessary tneae tornulag cnn be easily broken down Into two Independent porls,
sie will take Into consideration the Influcnce ol u chunge of geadetljo avopdinntes,
g the other, change in dimensions and comprzeslon or rererenée-elllpsold.

) $ 50, DIPFERENTIAL FORHULAS 0K CALGULATION uF JOINT INFLUENCE
* VARLATION OF PARAMETERS AND ORIENTATLON
01 REFERFACE-ELLIPSOLD
nocertain teennleonl guestlons necessity wrlses ror resolution off geodetic
protde ms betweon podnts on earth'a surtaee, when thelr coordinates reter to dit'terent
and ditterently orlented bediss of the Farth's reference-ellipsolds, 1n Lhls cagse
geodetic coordinates of' points contaln adiitlional errors, evoked by dlitrerence of
mgior cemiaxis, comprecsion woud orlentuaiion of reference-elllpnoids

The problem of determination of zhown Inflaences 1o analogous to Lheet, which
appenrs during sulirtltutlon ot :utepted reference-ellipsold wilh simultaneony change
of gecdetlle coordinates of Initticl pelnt of trinngulation of o glven country. lf
ench enge it is necessary to determine the influence of varlution o pnrameters and
orlectation o ellipgold to courdinates of points of geodetle constructlon, lFelow
nentioned derlvation is done according to the MGLh~d of Protessor A, A, lzotov,!

Let ua asyame that Foand L oare geodetle coordlnntes of n poln. ol ghabe
triangulation vo an ellipsold with parameters a and ¢; h is helght of geold nbuve
ref'ervnce-ellinsuid ot thls point; {x, v, 2) are space rectangulur coerdinutes of
a point with origin of coordtn ites ln center of elllpsold (a, ), . Wo. deslgnale

) vqriation of parameters of reference-ellipsoid and geodetle coordinates
correspondingly: oa, bwa, bB, 0L, uh, The connectlon between geodetle nnd
5
*A. A, lzotov, "Shupe and dimensions of the Eurth by contemporsrvy dot:u," M.,
Geodezizdut, 1950, p, ohH=07,




rectagilar spoee coordinates s siown by formulas (2
to record in the form of:

i Lhe value of i it [s expedlent
xo NcosBcosl 4 hcusBeosl® -
Y= Ncos3sin 2 4 AcosBsinl (10.:7)
tomN(l~—et)sinB 4+ hsin B

2,16), which, tahing 'nto aceonmt fﬁ

P JRS" "

curvature of' firat, verticul,

N — radlus or

h = helght of o glven polnt above reference-ellipsoid,

11" the parameters of ellipsold were
then carrvesponding chempen ol

to change to values bn and dbo, and the
geodetlc coordinates to bR, bl and bh, et by lare

coordinntes, ns functiors B, L, h, a and @, it can be culculnted by tnhe farvmalaon

P DR SRR e b TR B

i Lthats
"

Do S LLE R il E e A B L e LR I
¢

ly--fl-m+-‘.’l’-u.+ b+ et 2 AT (10.24)
a:--.-aa+-.-u.+ - -u.+ . za+.—-aa

v b e

f'rom (10,27} after differentiation:

:; B e (M+MsiaBeosL, -— (N +A)cos Hsin L,

LI
ﬁ---—(\i-i-h)smnslnl. --(.\ Qh)culllcusl.

e oo e

L . i'.'.
i (M4 M) cosB, i o,

-;—’-h"- = cosflcos L, % - cosBeus L, ’o" a McosBcus Lain® By,

-4‘-'-'— weusBsinl, -z- - -.“- cosBsinf., -a-'; v Alcos B sin L sin® B, :

2

:: mcosh, :: --«-(l—-e‘)slnli 2 e Msin® B~ N ind, ;
1

Substltuting values of partiul derivatives in (10,28), we find:

S N T S Y

dxom e (AL R)BInBeos LA e (N o BycosBain k3L 4 ] e
+cosBeosldh4 NeusBeus bk bd 4 Meus Beun Lsintlida ' ;
Qym (M4 h)sinBsinLi 8- (N + Acos BeosL AL 4

4 cosBainl3A4 NeonBainlia + Meus Balin Laint i 4a
dza(M4beoaBiB 4 ainBik4- N} = eMein Bt — :
e M{l 4 cos® Bus ctaind B)ain By, o s

i 3 .
T T M A TN BT S AT B e P Tt

.
g

CHEPE T T s s e

Resolving theaze equations relatively 8B, 8L cnd 6r: and considering that the

influence h on geodetic coordinates is negligidly ‘small, we obtaint
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Millw msinBlemlix —sinBsinliy - cosliir 4
4 NobsinBows Bl o o Msin282»

ril e —sinlix-{ cosldy (1
thecusBeusl At 4 cuslsinliyd-sinBia.~
~ N —eaintB)3a + Ml By

H
H

oo b o robbie o cerrelled snowogriven polng, In (400 0% copne wlth
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LLoin evhient tnet fer enledbations by (10, %0) 1L ds neceagary Lo Know bk, by

and e Thene wvalues o ave deusrtidned ram wne tel luwinéf, coepslderntlonas  Lhe axla
cropatee Do o e Ll paodde (ay, o) soad (a0 b, »u_l_f__l‘»u_)mf.x!‘_b_gx' thelr orlentation In a
l\‘;vl-g_" (' l' “!“«r:!':b-. ;\vll'l'l‘ 'lu' ool .’n'.!l Lo Live uxls o) Lhe world ondy consequently,
Between themselven, therelore corregdond by to them axls ol coordlnates o syrtens
{7, ¥y ) and (% 8 bx, g o+ by, 2 o+ ) wlll nlso be paraliel, L,e,, tormulay (Lo, M)
are Guet Eries ror cmy polnty Apptlonbde to Ldifal polnt of trelangulatton i1
by thoge fomiatag will be In Lhe t'orm of

Saima dxgca — MoaInTycos Ly By — Nocns BysinLyi Ly

+ COI.E. s Lo Sy 4 Nycos Bycus L, 3a 4+ M,cas Bycosly sin®fl, 3 a
SymiyewmaMisinB snlyd By 4+ Nycos Bycosty 2L, 4

o cos Bysin Ly 3 Ao + Nycos BysinLyta 4 . (10, 51)
4 Mycos By sinlysin® 3, 80 _

v m 32y m Mycoa By} By -+ sin BA K, 4 Ny(} = e X '

X 8@+ Myl +'eos® By— b sind ) % )

ynlaen with ¢ lpgn "oV pertaln Lo the fnicie] peint, but wiah '.:I‘(). ‘::l,U and hl:\,
L necessnry o underslband Lhe dafference Lo orlentution of twe ollipootde,  In
Cormiilag (10,40) @lLE by, by aoul b Yt n-ﬁut be tmolted Lhan 11 ta 0%y -"_y‘; andoty,
Formulae (100 50) and (30,91) Jolnbly resolved o Lmportant geodetie problems
with them L6 Vo porclille to mimput.v the correctton to geodetic coordinates varlation

el pratimeteors of sdophed replevencee=ellipgold and 1tg orjentation tu the aurface o

UpneTEarthy  Yilues BB, 8L nid 6K cun’ be Toruldéted a8 an orver of ordeptallon

o the gecond «illpanid in relatlion to' the filpet, in latitude, longltude nne helpht,
andés nho, “Lo nnd bh0 nre only Known in.n case, whore tdwn Lotween dirferenl
gendelle systems ot cocrdinatens sxiut, In the nbheence of these tles, Cformuiug
(40,%0) nud (20,31) ¢nn Ly uged ror approximate cnleulatlony and proculgite tlong
et uocﬁrncs in reselution ol fnverse gegdetid problemn,

“Approximute enlonlallong must bhe mrde In determinntion of evxpetted neciaey of
distances i wzamuthd, obtulned t'rom resolullon of “inverse gawletle problem, (0

siol.nu. Letween whicn the probaom o belng eenolved belony to dbFivrent eonet e

.6\)2u
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Contemporary astronomic geodetic nets ot various

conntrlos

systemns of coordinntes,

2 and conllinents in mozt cases dc not heave geodetic ties nmong themselves, Therefore i
f in determlnutlon of limiting values bR,. tlL,, Oh, it Is necessury Lo follow b
; derlvations, obuiined by W, N, Kracovskly on the basis of investlgation of geneprad %
: deviations off ellipsold from geotd. i
: “iieneral devintions of peoid f'rom ellipsold ure socompunied by genersl deviarloye .
? o' plumb lines, The greater value of such general deviatinng of plaph 1ines probat) 5
i does not exceed 8", " g :
% ’ Thuas, in the absence of geodetic tles the problem of determinution ol ld}w ;

t hhn. hh0 remains on the whole, unsolved. However Ly values of gencrul devintlorns ‘ - gn_m—m—
X ’ of' the pFeold f'rom ellipsold 1t ic possihle to precompute the expectad accurncy of E ‘

‘ unknown values, obtained f'rom resolution ol lnverse geodetic prodlem. 1hiaz problem |

; wus studled In detall by the author, and obtained results nre publisbed in nn

3 article: "On accuracy of distances and azimuths, obtained from solution of inverse §

? geodetle problem,"?

i

BT L TR

y M. N, Krasovekly. Instruction on higher gecdeay, Ch, N, M., Geodezizdat,
1942, .
' BYneodeny and Aerin) Photography" No. 3, 1059, p, 7935,
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CONCLUSION

liises off spheroldal geodesy were embodled In the first half of 17Lh century

nnd were developed during 19th and 20th centuries in works oi the greatest peedenicts

~ (jauss, Bessel, Struve, Helmert, Jordan, Krasovskly and others. Mathematlonl
apparatus of spheroidal geodesy was developed with the development of theory of
surftces, dirferential geometry, varlable ealeulus and 1n general, with progrece
In the area of differential and integral calculus, Carrying out close contuot
between geodesy and mathematlics, sclentliegis reached brilliant successges in solution
ot spheroidal geodesy problems, It is justly consldered that gpheroidal geodeny 1s
one of the most sclentlfically worked out divisions of higher geodesy. ‘Theoretical
and practical resclution of many of 1ts preblems by classical methods of‘mnthemunion
13 enrried out to perfection.

However with development of physles, technology and mathemsatics new chleular
appenred, possessing great potentianliallties for sclentifie generalizatlion and

geometrlic clarity, There 1s In proapect a vector and tensor calculus, A new

apparatus is presently wldely used in many areas of sclence and technolggy, reducing

to cimplicity and clarity of presentation, COmpléx problems and simultaneously
crenting o posalbility for profound sclentific generalizations and deducilons, New
erileulus frees us from artifleial constructions, unuvoldable in uppl]catioé of
systems o!' coordinates; geometricul solids and physical phenomeny in vectors nnd
tensors hre studied in their natural state,

In gpheroidal geodesy the new caleculus is slsec forging n path l'or itaelt, but

so tur it 1s not widely used, There are a series of investigations nnd indivlduni

attempts of expounding spheroiﬂal geodesy with the aid of the new mathemntlcul

L R [ R LR

3 e




npparatus, These 'lrst cteps clearly show that tuture mathematicnl apparntus of
ctheraidel peodesy 1o vector and Lensor cualeulns,  Hewvertielera, ot present, 1o
Invectigtion In thids ares st11l dld not lead Lo lnnd resules, which could be
utllized tor cducatlionul purposes,  Tlme 18 regulred and rurtner deep juvestlgatlons
Vefore 11 e pew pennesst Tesd spuaratas will fally show Tes adveantynes fo reocla ion o

probleme o1 spheroldul geodesy over the methods of classlcul mathematles,

Thiv s why Ln this btook apparatuc ol vector and Lensor enleulus 16 not used

ver cxpockenllnge bases of spherobdal peadesy, Gne o Lhe selenticle problems inoaren

g‘ o aplieenida ] peodesy conslsts in applicntlon ot Lhls appavalus,  Loth In USSK, nnd
. ;4 abironed selentirie work Lu this direction 1s conducted more or lese intensely.
* Mo the ubove LTLodoes not tollow that classieal apparaias ot spheroldal
- ‘;"°"%' Foodasy 15 not in a position Lo resolve arlsing new problems, [fowaver 16 aoes not
; pussess that depth of penetration, which ls peculiar to the new apparatus,
: Charseteristie pecullzrity of methods of spheroldal geodesy consists In Lha
thiey nre cqaleulnted molnly tor trentment of miterianl of 1si order Lrimnguliabklion.
; lesides the length ot slde of trlangulatlon, along wlth square of eccentr.clity of
g a spherold, are consldered very small valaes . Flrst order in comparlson Lo menn
radiug of eucth,  However contemporncy rudar technleal means nllow'crunLlon ot’
! peodetic nets with sldes HOJ=000 km, nnd In prospect up Lo 800-1000 km, ‘thus,
§ pleture looms of world geodetle nete with long sides and reallzullon of geodetlr
é tles between nels of Ladividuat countrles and continents,
: é n conneotbon with such prospective development of geodetle work, thie Plrat
. ; prablem advanced iz of great dis!nnces nol as o partieslar predblem, but no n banie,
; g o whict: the theory of spheroldnl geodesy s based, In Chapter VI basic methods
: § ape pregented for the resolution of geodetle problems for greal distoances, hnt Lhey
g f‘ Jopot exbaust the problem on the whole,  Thorvough bovesligatlons eoncernlnyn Lhilu
. 'Q; problem are belng conducted, Lesolution of gecdetie prohlews Foso lone dlstaneney
‘! i; on the gurtface of the ellipsold is one of the fundumental scientiile problems of
il !é*? ' spheroldnl geodesy. "Surmounting long distancea" in connection with the develophent -~
{s, ‘ of rockel technolopy and artiflclial cosmic bodles occura with exiraovnrdinuary speed
: Hwi : in our Lime, 'The research in spheroidal geodesy is confronted wilth coumplex problems,
: ) f’ whose reguiutlon will require new powerful mathematlcal and geodunle weunn,
b < . All peodetic measurements up till now have been done on Lhe svrrace of Lhe
; b>; Earth, therefore for muthematleul treatment of thelr resulte virlous purfuce
%
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Rocket technology, artificiul cosmie

L.
b2

ayshems of curvllinear coordinates are tuken,

Fonien smd radap vechinleal meqas erente absolutel, tew corlltions for geodetie

nercnirementy, since they cnn nlso be produced In spacc, nvienoly for freatment off

materinl for such measurements systems of surface coordinntes are lnexpedient.,  ilere

Lt cman )

it Wil be proritable to npply space systems ot ceordinsbes wilh origin n the

center of o spherold or at a given point on the surface., Development and applicatio:.
ot such aystems of coordinates 1s the future problem of apheroldal pgeodesy,  cnrihber,
there arlses n reduction problem, s a recult o measurements, carried oot oo
aurtnee of the Earth, Lo be projected on iie surisce of the referentesclliveold,

e

1t was non difrieult to sce Trom Chapter II1 that u connection ol pelnie o

[N

v

sur:iwce of the ellipsoid by geodeties and formation of figures from these lines

teud Lo the fact .that the difference of latitudeg, longltudes and azlmuths 15 not i

il
l

st '«r"efn:'-%-mmlu«qmzw. v BGOSR A o SRS}

expressed in o closed form by elementary functions, but presents elliptlie Integrals,
whose practical application evokes great difficulties, Due Lo this 1t lg recezsary
t.o replace them by infinlte serles, the general term of which, as « rule, remains

unknown, investigation o' convergence however 1s a difficult problem. One ol the

problems of spheroldal geodesy is that, in order to investigate the question such N ]

as in wnat problems 1t is expedlient to apply gecdesies, and in what problems to
tench nbout normal sectlions and chords of elllipsold. Although this problem it net

new, it 18 not completely solved under contemporary condltlons,

cate o

Cnlculating work in spheroldal geodesy occuples a significant place. Contemporury
computer technology is being developed at a rapid rate, Due Lo this formula and
3 methods which actual calculations are made, must be basically changed. At present
it number of problems in spheroidal geodesy are resolved on high speed computers, i

For machines the meaning is not complexity of formulas or quantity of arithmeticul

XSG
C e N M meLPe b e

3 operntlons, which are characterlistic for logarithmic calculation, but converlenco :

] of programmlng, Special investlgations are required, in order Lo esgtablish type

[

of machines and accuracy of calculations; simultaneously, construction of formnlns

convenient for programming is required. o N . O

All geodetic projections are developed applicable to treatment of geodetic
nets with short sides, layed out in comparatively small areas. The problem of lonhg
distances poses & problem in absolutely new fashlon regarding selectlon of u surface

of projection. Projecting on a plane of uny projection at long distances will lead

to prohibitive distortions and large deformations of geodetic construction., In a




ghven ecoge 1L might be expedient o utillze tie propertles o aposphers, where eoch
podnn ar s e corvatare volned der o wmitl stallae curvarure ot Lhe gphieroid,
.

p i Lo ety witt taiag bHoin peeegrery te dnye ot

ate poesitle Teerease of wid o

Gt orones oo systew of gnurs-Keumer coordinater by means of introducticn o

B : : t mapplerental condltlon for sclecilun of Gharacteristice runctions,  From matpematicn|

\ Side Lhese problemns are complex and require deep and mantrold investigation:s l'er

x treir solutlon,

: Avvees e pedent UrLe prot oo of cpoeroldal pecdesy e e Lennt Tmportont

} Pl do compiedg by questicons o proper system of degignations and specinl

J rerminolesy.  In spheroildal peodesy matnemutical symbolism io malnly vsew, but ap

; 2 ’ to present, time thls symbollism, stranded in the initial stage of 1t3 development., )

v i too bulky, dowever the nroblem of crention of speclal symbolism ror spheralidil

X Foodesy must be resolved porallel with the development of the mogt selentirte
dlacipline In the course o resolutlion of theoretical and practical problems of
Ve geodtesy.,

Moted above are only the major sclientiric prodblems of contemporary spheroldnl

% peodesy,  With the develceprment of geodelle work and new geodetle technology, nlso

! the regquirements o sdlacent diselplines, appenr more and more new problem: in b
arens or spheroldal peodesy.  Toe worst error in that affirmstion, In contormance

. wlith: whicn Iu T8 believed that Lhe problenms of spheroidsl geodesy were solved by

g Lipe ppreqbegl potthematiolans ol the past. so thoronghly hat for the share off our

‘, renertlon only the current problems of dnlly practical activity redmain,

1] ]
7
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